

Using Continuous Operations
Mode for Proper Backups

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 7

Using Continuous Operations Mode for Proper Backups
Last Updated: July 2010

Ensuring the Validity of your Backup
There are many types of "valid" backups. The trick is to know what level of integrity
your backup system is providing today and what type you really need to protect your
company’s data assets. As the level of integrity increases, so do the costs and limitations
that are imposed on the backup. Like anything else in life, it important to know the
tradeoffs involved when selecting a strategy. Note that the issues presented herein are
problems with any database, not just Btrieve databases.

The first part of this article looks at the various types of integrity that can be attained. The
second part discusses achieving database integrity within Btrieve databases.

Media Integrity: This refers to the problem of backing up files to a given device that has
failed but does not report errors properly. The backup software says that everything is A-
OK, but every tape is blank.

Remember: You do not do backups just to do backups. You do backups to do restores.
Any backup scheme should have periodic (weekly or monthly) testing of the backup
media, including the restoration of a random file and comparing the resulting data with
the original.

Backup Integrity: Many backup packages can access files even though they may be
open by the OS. If your backup software reports a "complete backup" with no errors, then
you have a copy of the entire database on the tape.

Unfortunately, there is no guarantee that it will be a usable copy, as it is just a copy of the
files as the backup software got to them. Remember that open Btrieve files can change
rapidly, at many different points in the file. By the time the backup software gets through
the first half of the file, the second half may have been changed hundreds of times. You
may have the entire file on the tape, but it may not be a proper snapshot.

One devastating problem that can occur is that when the Page Allocation Table is backed
up, it lists several free-space pages that actually contain valid data by the time the backup
gets to them. Restoring this file will almost definitely result in lost data or a Status 2.

Data File Integrity: This indicates that each data file on the backup media is a complete
representation of the file at a given instant in time. Some backup packages which claim to
back up open files act as data caches which store the original data for a file in a memory
cache and allow the data on disk to be changed real-time.

This solution works very well, but if there are too many changed pages to keep in
memory, or if the server crashes during the backup, these caches typically fail and revert
to a normal backup, giving essentially no protection at all.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 7

Database Integrity: Database integrity is defined as having a complete snapshot of all
data files in the database from a given instant in time. It can be achieved through the
use of a more powerful data cache package capable of treating groups of files as a single
unit. Of course, when many files are in a group and are being actively modified, there is a
greater likelihood of the cache being overrun with changes, invalidating the entire
backup. Database integrity for a Btrieve database can also be achieved through the use of
Btrieve’s continuous operations mode.

Application Data Integrity: This is the hardest to control. Many database applications
do not utilize transactions. Instead, they lock individual records in multiple files and then
update each of them in turn.

A good example of this is an inventory application that supports storing parts in multiple
locations. It uses a location file that contains locations, quantities, and pointers to the
inventory part file. For performance reasons, the total inventory quantity is also stored in
the inventory file. Then, when new parts are added to inventory, the application increases
the values for both the inventory part file and the inventory location file. What happens if
the application updates the inventory part file, but before it can update the inventory
location file, the database is "snapshotted" onto a backup either by continuous mode or a
data cache? In this case, if these files must be restored, the total inventory quantity will
no longer match the sum of the inventory location quantities.

This application-level integrity is the hardest to ensure, as it requires either the extensive
use of transactions or that all users exit the application before the backup. Luckily, it is
also the easiest to recover from, since there is no actual corruption in the files themselves,
and applications which can be affected by this often have "fix" programs to adjust the
quantities. Of course, this also means that it may be impossible to detect a problem of this
nature until someone is comparing reports or doing auditing at year-end and notices the
discrepancy. (Just hope it doesn’t affect your paycheck stub!)

In the next section, we will discuss the options for using Continuous Operations Mode to
maintain database integrity during your backup.

What is Continuous Operations Mode?
Every Pervasive database engine since Btrieve 6.0 supports the use of Continuous
Operations Mode for files. Continuous Operations Mode (or ContOps), enables you to
take a snapshot backup of your database files while they are in use by your application,
essentially eliminating downtime related to backups.

Continuous Operations Mode works by freezing each data file in its current state and
reopening it in a shared, read-only mode so that the backup software can easily access it.
Then, the engine creates and opens a delta file, which uses the same base file name but an
extension of "^^^", to which all file changes are written. When data is read from the file,
the engine checks the delta file first to see if an updated page is available. If a new page is
not found, the page is retrieved from the main data file instead.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 7

When the files are removed from continuous mode, the original file is opened in read-
write mode once again, and changed pages from the delta file are committed back to the
primary file. Once this completes, the delta files are deleted and the file is marked as
being open in "normal" mode once again.

Using Continuous Operations Mode to Attain Database Integrity
 Having a solid backup is imperative to properly recover from a disaster. In the previous
issue, we reviewed various levels of data integrity that can be obtained by a backup
system. In this issue, we delve more deeply into the mechanics of continuous operations
mode with the Btrieve and Scalable SQL database engines, so that you can maintain full
database integrity as you prepare for those inevitable disasters to strike.

In order to utilize continuous operations mode for an entire database, four prerequisites
must be met.

1. The database must reside completely on a single server. If a set of files is split
across two or more servers, then only the files on a single server can be
guaranteed to retain full database integrity, while the rest of the files will have
data file integrity only.

2. Your database engine should be as fully patched as possible. Some versions
(especially very old 6.10 engines) have been known to have problems with
continuous operations mode.

3. Your database files must all be in the 6.x or higher format. Continuous
Operations mode is not supported on 5.x or earlier files.

4. For NetWare servers, you must use a BUTIL.NLM file which is dated 12/11/1995
or later. Earlier versions had problems with a task ID that prevented BUTIL from
being able to remove files from continuous mode in certain situations.

To ensure that the entire database gets placed into continuous mode at the same time, you
need to create a text file that contains a list of all files in the database with complete
pathnames (including volume names on NetWare and server-side drive letters on
Windows Servers). Each file name should be on its own line, like this:

 C:\PVSW\DEMODATA\PERSON.MKD
 C:\PVSW\DEMODATA\FACULTY.MKD
 ...

Make sure that all pathnames in this file refer to valid database files on the server, or
problems may result. You may wish to also include data dictionary (DDF) files in this
list, especially if they are being actively changed. The command “DIR /B /S” may be
helpful in building this file. This file will be referred to as DATAFILE.TXT in the
subsequent discussion.

Once the file DATAFILE.TXT is prepared, you should test the continuous operations
mode process. Make a full backup of your files with all users out of the database and
verify that it worked. (This is a good idea before ANY major upgrade or testing of new

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 7

features.) Use the following command from the server console to start continuous mode:

 BUTIL -STARTBU @DATAFILE.TXT

On NetWare Servers, you may need to add the "LOAD" keyword before each line, and
you will also need to provide the volume name for the location of DATAFILE.TXT. For
Windows servers, specify the path to the DATAFILE.TXT on the local machine, such as
C:\DATAFILE.TXT. Note the time is takes for the command prompt to come back. This
tells you how long it will take to put the database into continuous operations mode, and
should be used in your backup job to insert a pause before starting the backup.

Next, look in the directory, and see all of the files with the ^^^ extension. This indicates
that the files are properly logging operations in continuous mode. If you do NOT see
these files for every database file, you may need to modify the DATAFILE.TXT file list.

To remove the files from continuous mode, execute the following command from the
server console:

 BUTIL -ENDBU @DATAFILE.TXT

This command will roll the changed pages from each delta files into the corresponding
primary files and then delete the delta. If the database was very active during this time,
you may see the server run at a higher utilization while this process completes. You will
also be able to watch as the delta files disappear from the directory as they are processed.

The process of rolling files into and out of continuous mode can be time consuming,
especially for large databases with many active changes. It is important to schedule these
functions for a quiet moment in the day. Outside of a minor "pause", the users should see
no impact from a typical continuous operations mode process. (Note that if there is a
substantial number of database updates, inserts, or deletes while the system is in ContOps
mode, the server will likely get very sluggish, as the extra load from ContOps is busy
handling the writes to the delta file. For this reason, we do NOT recommend doing any
write-intensive processing during a backup.)

Automating Continuous Operations Mode
Once you understand the process itself, it is a simple matter to automate it from the server
console. You simply need to execute the proper BUTIL command before and after the
backup process. Several server-based backup products like ARCserve and BackupEXEC
provide this functionality as a base part of the package and can even provide a built-in
delay for the process to complete before it continues. The advantage to this solution is
simplicity. The disadvantage is that the exact time for rollout may vary with the length of
the backup itself, and users will not know when to limit their usage.

If your backup package does not support executing server commands, or if it is running
on a different server or a workstation, then you will need to issue the commands either
manually or from an command scheduler utility. Windows users can leverage the built-in

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 7

AT or SCHTASKS functions, while NetWare and Linux users can use the CRON utility.

Testing Continuous Operations Mode
Once you have achieved a good backup, how can you fully test it? Assume a major
disaster (tornado, earthquake, hurricane, fire, or flood) just wiped out your entire
building. Now, get your server up and running with only your off-site backup tape.
Remember to include the time needed to order new hardware, software, tape drive, etc.
Companies who can be running again in less than a few days are very rare, indeed.

When the files have been recovered, you should first delete any delta files. (Remember
that delta files are still rapidly changing, and should not really be included in the backup.)
Then, check the timestamps on the files -- they should all be exactly the same -- the time
of the START of the backup. If you find any files that are NOT the same timestamp, then
this file may not be a Btrieve file, or if it is, then it was not properly included in the
DATAFILE.TXT file, and you should remediate that before the next backup cycle.

Once you have the data recovered, you should try running your application to verify that
all is well. You may also wish to use a tool like Goldstar Software's KeyCheck to run
through every record in some of your more critical files to ensure that the files remain
intact.

What To Do When Things Go Bump In the Night
Everything is great -- right until something goes terribly wrong in the middle of your
backup. (Which, as Murphy would say, is the ONLY time that things will go wrong.) So,
when the power goes out and the server crashes, what should you do?

Option 1: First, Kill All the Deltas
If you simply restart the server and delete the delta files, the system will think it was just
restored from backup and recover gracefully. All data changes since the STARTBU will
be lost, but all files are in a known, consistent state.

Option 2: Allow the Deltas to Recover
If you leave the files alone, then the roll-in process will start on each file which is
opened. Note that the deltas may be partial or may have partial transactions in them, so
choose wisely. What happens if you don't open up all files during the day? The next
evening, your STARTBU will fail, because not all files could be put into continuous
mode (because some still had deltas existing). You MUST do something which causes
every file to open and resolve the deltas prior to the next backup. That something may be
one of the following:

1. Open each file. A BUTIL -STAT will do the trick, or even Goldstar Software's
LISTSTAT which accepts wildcards. This works very well on older 6.x engines,
but not so well on the newer ones like Pervasive.SQL 2000 which only roll files
in while the file is actually open.

2. Open each file & HOLD IT OPEN. Use the Function Executor (WBEXEC) or
even WBEXEC32 to open each file & hold them open until the system finishes

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 7

the roll-in. This may be required in some cases where #1 doesn't work. A new
utility called HoldOpen to hold these files open is available here.

3. Open each file, read the first record, then update the first record in place. Hold the
file open until the roll-in completes. This is required in places where #1 & #2
don't work.

Hopefully, Pervasive will work out the issues with the roll-in process, but until then, we
are stuck with what we have. In any event, if both the delta and the live file are getting
updated timestamps, then the roll-in process is continuing. Let it finish as soon as
possible -- leave people out of the applications if you must to allow the process to
complete.

Once all deltas have been rolled in, THEN you can start your next backup cycle.

The Pervasive Backup Agent
For users of Pervasive.SQL V8 and newer server engines, and for the Pervasive PSQL
v10 Workgroup Engine, there is another tool available that simplifies this process greatly.
The Pervasive Backup Agent, with a list price of only $249, can automate the entire
Continuous Operations mode process for you. When the Backup Agent goes into backup
mode, it talks to the database engine to determine the list of active database files,
eliminating the need to create or maintain a file list. It can be easily integrated with the
backup software in a single command (PVBACKUP -ON). Even better, if there is a
server crash, it will automatically hold the database files open for you for up to 30
minutes when the system restarts, giving the database time to recover from the failure and
roll in the changes.

With all of these benefits, the Pervasive Backup Agent is well worth the cost. One
downside of this tool is the lack of a "white list", so it is possible that database files can
get copied without going into Continuous Operations mode, and then have the file open
up WHILE the copy is running, causing Status 46 problems. (See our separate paper on
this topic.) Luckily, you can emulate the white list via a simple batch file with a bunch of
BUTIL -STAT commands, one for each database file. Of course, if you are creating a list
of files for BUTIL, you could also use ContOps manually and save the cost of BA, too.

About the Author: Bill Bach is the founder and President of Goldstar Software Inc., a
firm dedicated to providing installation, configuration, optimization, and troubleshooting
services for Btrieve and Pervasive.SQL engines and applications. For more information,
visit www.goldstarsoftware.com.

