

Accessing Zen v16
from Python on Windows

Using the Btrieve 2 Interface

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 10

Accessing Zen v16 from Python on Windows Using the Btrieve 2
Interface
Last Updated: August 2024

The Actian Zen database engine (formerly known as Actian PSQL) supports a wide variety of
application programming interfaces (APIs) to access the data. Some of these interfaces leverage the
power of SQL to access your data, while others use a lower-level interface, commonly known as the
Btrieve API to provide the needed performance and flexibility.

With the introduction of the Zen IoT environment on hardware with limited capabilities, we fully
expect the new Btrieve 2 API to become a favorite for developers. This new interface allows
developers to create code using scripting languages (like Python, Perl, etc.), as well as other higher-
order languages like C#. These languages simplify the development of simple data collection and
analysis applications, especially in a web-based or IoT (Internet of Things) environment running on
Zen Core (for iOS or Android) or Zen Edge. More importantly, the Btrieve 2 API offers developers
the ability to maintain the high performance and extreme flexibility they have come to know and expect
from the Zen/PSQL database engine, all in a tiny footprint.

This paper is broken up into each of the critical steps you need to follow in order to get Python working
with Zen v16 on Windows. It is complicated because it brings together many different components,
many of them open source, so that they all work together. The process was first documented by
Actian’s own Linda Anderson in a blog post, but we wanted to give you a little bit more information to
help you jumpstart the process, so we created this document to smooth out the process. Note that as the
various components change, such as Python, SWIG, and the Btrieve 2 API, you may need to re-run this
process to build a new SWIG wrapper.

Because of this complexity, we recommend that you create a development folder so that you can keep
everything in one place on your development computer. Our example here will use the folder
“C:\Develop” as the base folder, and everything else will be installed under that location. Of course, if
you use an alternative location, just be sure to change “C:\Develop” to your own root path in all of the
sample code.

Note that while the code in Appendix A contains some examples of various operations for you, it does
NOT explain the ins and outs of the Btrieve 2 API itself. For more detailed information on the Btrieve
2 API, please consult the Actian web site at https://docs.actian.com/psql/btrieve2v13/html/. Note,
though, that this documentation is specific to the C/C++ environment. Since Python can determine the
length of parameters from the parameters themselves, the length parameters do not need to be passed.
If you have specific questions about parameters needed for a call, check out the btrievePython.swig
file.

Downloading and Installing Python for Windows
If you don’t have Python set up yet, then this becomes the first obvious step.

1) In your web browser, go to https://www.python.org/downloads/windows/ and select the version
of Python you want to download, which will typically be the latest one. At the time of this
writing, the current version is 3.12.5.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 10

2) From the second page, click on the link to download the Executable Installer for the platform on
which you want to install. For a typical x64 Windows environment, we recommend the link
titled Windows Installer (64-bit).

3) Run the downloaded file to get to the following screen:

4) Check the “Add python.exe to PATH” box and click the option for a customized installation.

Select any optional features, then click NEXT.

5) Change the default installation path to C:\Develop\Python312 and click Finish, then wait for the

installer to complete and click Close. When you are done, you will have Python installed in the
C:\Develop\Python312 folder and ready to go.

6) Create a folder called MyPrograms underneath the Python312 folder – this will be where we
will do all of our development efforts.

Downloading and Installing SWIG
The SWIG components are the second piece:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 10

1) In your web browser, go to https://www.swig.org/download.html to select the version of SWIG
you want to download. At the time of this writing, the current version is 4.2.1.

2) As indicated for Windows, you should select the swigwin-4.2.1 file:

3) There is no installer for SWIGWIN. Instead, simply unzip the entire file into your MyPrograms

folder, creating C:\Develop\Python312\MyPrograms\swigwin-4.2.1 in the process.

Downloading and Installing the Btrieve 2 SDK
The next piece you need is the SDK download for Btrieve 2:

1) Go to https://esd.actian.com/product/Zen_PSQL in a web browser.
2) In the boxes provided, select SDKs and Btrieve 2.

3) Scroll down and open up the link for Btrieve 2, then click on the Download button for the

Btrieve 2 Windows SDK for Zen v16.

4) After it downloads, double-click the EXE file to launch the installer.
5) Change the Folder name to C:\Develop\Python312\MyPrograms and click Unzip:

6) You will now have the Btrieve 2 API components in a folder on your workstation inside the

MyPrograms folder.
7) Copy these two files from the “swig” subfolder to your MyPrograms folder:

btrievePython.swig
btrieveSwig.swig

8) Copy these two files from the “include” subfolder to your MyPrograms folder:
btrieveC.h
btrieveCpp.h

9) If you are working on a 64-bit system, copy the following files from the “win64\x86_64”
folder to your MyPrograms folder. If you are on a 32-bit OS, copy the files from the

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 10

“win32\x86” folder instead:
btrieveC.lib
btrieveCPP.lib

Building the SWIG Wrapper
Building the SWIG wrapper is the most complicated part of this entire process. This process requires
that you have a development environment on your computer, and this documentation is assuming
Visual Studio. However, at the time of this writing, the following compilers were supported:

 --compiler=bcpp Borland C++ Compiler
 --compiler=cygwin Cygwin port of GNU C Compiler for Win32
 --compiler=mingw32 Mingw32 port of GNU C Compiler for Win32
 --compiler=msvc Microsoft Visual C++
 --compiler=unix standard UNIX-style compiler

If you don’t have any of these installed, you may be able to find a Community Edition of Visual Studio
from Microsoft’s web site. (https://visualstudio.microsoft.com/visual-cpp-build-tools/) When
installing, you will want to select the Desktop Development option first:

Then go to the Individual Components screen and make sure that these two components are also
enabled:

 and
 Alternatively, ask a developer friend to help with this step!

1) Open a command prompt and change to your MyPrograms folder:
CD C:\Develop\Python312\MyPrograms

2) Build the SWIG Wrapper with this command:
swigwin-4.2.1\swig -c++ -D_WIN64 -python btrievePython.swig

If this process is successful, you will have two new files in your current folder, namely
btrievePython.py and btrievePython_wrap.cxx. Note that if you are building SWIG for a
different environment (such as Win32 or MacOS), you might need a different –D switch, such
as -D_WIN32 or -D__APPLE__.

3) Create a text file called setup.py and paste in the following text:
from distutils.core import setup, Extension
btrievePython_module = Extension('_btrievePython',
 sources=['btrievePython_wrap.cxx'],
 library_dirs=['c:\Develop\Python312\MyPrograms\ '],
 libraries=['btrieveCpp'],
)
setup (name='btrievePython',
 version='1.0',
 author='Actian',
 description="""Compile Btrieve 2 Python module""",
 ext_modules=[btrievePython_module],

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 10

 py_modules=["btrievePython"],
)

Be sure to change library_dirs if you are using a different location! Note that the trailing
backslash has a space after it. If you omit this space, then the backslash will escape the single
quote, and the next command will fail.

4) Because Python 3.12 removed the distutils package, you will need to install the setuptools
package, if not already available:
pip install setuptools

5) Run this command to build the btrievePython module:
python setup.py build_ext --plat-name="win-amd64"

This will create the compiled Python file _btrievePython.cp312-win_amd64.pyd in the build\
lib.win-amd64-cpython-312\ folder. If you have problems with this step, see below.

6) Copy the newly-created file into the MyPrograms folder and rename it to _btrievePython.pyd:
copy build\lib.win-amd64-cpython-312_btrievePython.cp312-win_amd64.pyd .
REN _btrievePython.cp312-win_amd64.pyd _btrievePython.pyd

7) (Optional) You can copy the pyd file to the C:\Develop\Python312\DLLs folder as well. This
should be done if you will be working within many different folders on the same workstation
and you don’t want to copy this file around to each of them.
copy _btrievePython.pyd ..\DLLs

Note regarding step 5 above: The BUILD_EXT script is supposed to be smart enough to detect your
compiler. It worked fine with my Visual Studio 2019 installation, but a previous install with VS2013
did not, and Step 4 only returned the minimal error “Unable to find vcvarsall.bat”. After much digging
through the script files, I eventually found that I could fix this by setting a new environment variable:
 SET VS140COMNTOOLS=%VS120COMNTOOLS%

This allowed the build_ext script to locate the v12 compiler in the v14 location.

In another environment, a partial installation of the Visual Studio Build Tools was available, and the
error “error: Microsoft Visual C++ 14.0 or great is required. Get it with “Microsoft C++ Build
Tools”: https://visualstudio.microsoft.com/visual-cpp-build-tools/” was returned. If you see this, re-
run the Visual Studio Build Tools installation and Modify the installation. Go into the “Individual
Components” page and verify that the options for “C++/CLI Support build tools (Latest)” and “VS
2022 C++ x64/x86 build tools (Latest)” are selected.

When it runs properly, you should see the following output text (or something similar):

C:\Develop\Python312\MyPrograms>python setup.py build_ext --plat-name="win-amd64"
btrievePython_wrap.cxx
 Creating library build\temp.win-amd64-cpython-312\Release_btrievePython.cp312-win_amd64.lib and
object build\temp.win-amd64-cpython-312\Release_btrievePython.cp312-win_amd64.exp
Generating code
Finished generating code

Creating your Python Application
Once you’ve jumped through the above hoops, you can simply import the newly-created module in
order to access the Btrieve 2 API from with your code:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 10

 import btrievePython

The sample code in Appendix A shows examples of several key operations, including:

 Creating a New File
 Opening an Existing File
 Creating a New Index on an Existing File
 Inserting Records
 Reading All Records in Key Order
 Performing a Record Lookup

If you want to try this sample application, create a new text file called test_btr2.py, then copy and
paste in the source code from Appendix A into the file and save it.

Special Note about Python 3.8: In v3.8, DLLs are loaded in a more restrictive manner – the operating
system PATH is not used by default. The workaround is to have the following lines before the “import
btrievePython” line:
 import os
 os.add_dll_directory("C:/Program Files/Actian/Zen/Bin")

Understanding Record Formats
One obvious question that arises when you look at this code is about the record formats. You can find
the complete definition in the struct.pack and struct.unpack function documentation, but here are a few
codes to get you started:

 b: 8-bit signed integer (byte)
 B: 8-bit unsigned integer (Byte)
 h: 16-bit signed integer (half-word)
 H: 16-bit unsigned integer (Half-word)
 i: 32-bit signed integer (integer)
 I: 32-bit unsigned integer (Integer)
 q: 64-bit signed integer (quad-word)
 Q: 64-bit unsigned integer (Quad-word)
 f: 32-bit floating point value (float)
 d: 64-bit floating point value (double)
 ?: 1-bit boolean
 s: character or byte array (string)

Further, there are indicators for defining the storage format of integers, also known as “endianness”:

 <: Little-endian storage format
 >: Big-endian storage format

Finally, for multiple occurrences of a given field, simply include the repeat value as one or more digits
before it – so “32s” indicates a 32-byte string.

Running Your Python Application
Running the application is even easier. Simply launch Python and pass in the script name!

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 8 of 10

 python test_btr2.py
From here, you’re only limited by your imagination!

Finding More Help
If you have other problems getting this to work, we urge you to contact Actian directly through their
web forums at https://communities.actian.com/s/ for more help. If you need some additional hand-
holding, Goldstar Software may be able to assist you as well. You can contact us at 1-708-647-7665 or
via the web at http://www.goldstarsoftware.com.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 9 of 10

Appendix A: Sample Application
The following application makes use of the Btrieve 2 API and can be used as instructional and sample code.

import os
os.add_dll_directory("C:/Program Files/Actian/Zen/Bin")
import sys
import struct
import btrievePython as btrv

btrieveFileName = "Test_Table.mkd"
recordFormat = "<iB32sBBBH"
recordLength = 42
keyFormat = "<i"
key1Format = "B32s"

Create a session:
btrieveClient = btrv.BtrieveClient(0x4232, 0) #B2
Specify FileAttributes for the new file:
btrieveFileAttributes = btrv.BtrieveFileAttributes()
rc = btrieveFileAttributes.SetFixedRecordLength(recordLength)
Specify Key 0 as an autoinc:
btrieveKeySegment = btrv.BtrieveKeySegment()
rc = btrieveKeySegment.SetField(0, 4, btrv.Btrieve.DATA_TYPE_AUTOINCREMENT)
btrieveIndexAttributes = btrv.BtrieveIndexAttributes()
rc = btrieveIndexAttributes.AddKeySegment(btrieveKeySegment)
rc = btrieveIndexAttributes.SetDuplicateMode(False)
rc = btrieveIndexAttributes.SetModifiable(True)

Create the file:
rc = btrieveClient.FileCreate(btrieveFileAttributes, btrieveIndexAttributes,

btrieveFileName, btrv.Btrieve.CREATE_MODE_OVERWRITE)
if (rc == btrv.Btrieve.STATUS_CODE_NO_ERROR):
 print('File ', btrieveFileName, ' created successfully!')
else:
 print('File ', btrieveFileName, ' not created; ', rc, ': ', btrv.Btrieve.StatusCodeToString(rc))

Allocate a file object:
btrieveFile = btrv.BtrieveFile()
Open the file:
rc = btrieveClient.FileOpen(btrieveFile, btrieveFileName, None, btrv.Btrieve.OPEN_MODE_NORMAL)
if (rc == btrv.Btrieve.STATUS_CODE_NO_ERROR):
 print('File open successful!')
else:
 print('File open failed - status: ', rc, ': ', btrv.Btrieve.StatusCodeToString(rc))

Create Key 1 as a String with Null Indicator Byte:
btrieveKey1aSegment = btrv.BtrieveKeySegment()
rc = btrieveKey1aSegment.SetField(4, 1, btrv.Btrieve.DATA_TYPE_NULL_INDICATOR_SEGMENT)
rc = btrieveKey1aSegment.SetDescendingSortOrder(True)
btrieveKey1bSegment = btrv.BtrieveKeySegment()
rc = btrieveKey1bSegment.SetField(5, 32, btrv.Btrieve.DATA_TYPE_CHAR)
btrieveIndex1Attributes = btrv.BtrieveIndexAttributes()
rc = btrieveIndex1Attributes.AddKeySegment(btrieveKey1aSegment)
rc = btrieveIndex1Attributes.AddKeySegment(btrieveKey1bSegment)
rc = btrieveIndex1Attributes.SetDuplicateMode(btrv.Btrieve.DUPLICATE_MODE_ALLOWED_NONREPEATING)
rc = btrieveIndex1Attributes.SetModifiable(True)
rc = btrieveFile.IndexCreate(btrieveIndex1Attributes)
if (rc == btrv.Btrieve.STATUS_CODE_NO_ERROR):
 print('Index 1 created successfully!')
else:
 print('Index 1 not created; error: ', rc, ': ', btrv.Btrieve.StatusCodeToString(rc))

Insert records:
iinserting = True
print('\n')
while iinserting:
 new_name = input('Insert name (Q to quit): ')

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 10 of 10

 if new_name.lower() == 'q':
 iinserting = False
 else:
 record = struct.pack(recordFormat, 0, 0, new_name.ljust(32).encode('UTF-8'), 0, 22, 1, 2018)
 rc = btrieveFile.RecordCreate(record)
 if (rc == btrv.Btrieve.STATUS_CODE_NO_ERROR):
 print(' Insert successful!')
 else:
 print(' Insert failed - status: ', rc, ': ', btrv.Btrieve.StatusCodeToString(rc))

Get Record count:
btrieveFileInfo = btrv.BtrieveFileInformation()
rc = btrv.BtrieveFile.GetInformation(btrieveFile, btrieveFileInfo)
print('\nTotal Records inserted =', btrieveFileInfo.GetRecordCount())

Display all records in sorted order
print('\nHere is a list of the names in alphabetical order:')
readLength = btrieveFile.RecordRetrieveFirst(1, record, 0)
while (readLength > 0):
 recordUnpacked = struct.unpack(recordFormat, record)
 print(' ID:', recordUnpacked[0], ' Name:', recordUnpacked[2].decode())
 readLength = btrieveFile.RecordRetrieveNext(record, 0)

Look up record by name
ireading = True
while ireading:
 find_name = input('\nFind name (Q to quit): ')
 if find_name.lower() == 'q':
 ireading = False
 else:
 key1Value = struct.pack(key1Format, 0, find_name.ljust(32).encode('UTF-8'))
 readLength = btrieveFile.RecordRetrieve(btrv.Btrieve.COMPARISON_EQUAL, 1, key1Value, record)
 if (readLength > 0) :
 recordUnpacked = struct.unpack(recordFormat, record)
 print(' Matching record found: ID:', recordUnpacked[0], ' Name:', recordUnpacked[2].decode())
 else:
 print(' No record found matching "'+find_name+'"')
 status = btrieveFile.GetLastStatusCode()
 if (status != 4):
 print(' Read error: ', status, ': ', btrv.Btrieve.StatusCodeToString(status))

Close the file:
rc = btrieveClient.FileClose(btrieveFile)
if (rc == btrv.Btrieve.STATUS_CODE_NO_ERROR):
 print('File closed successfully!')
else:
 print('File close failed - status: ', rc, ': ', btrv.Btrieve.StatusCodeToString(status))

