
APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATION

290 SW 43,d. SI,eet
Renton, WA 98055
206-251-6548

Technical
Introduction
to the
AppleIIGs
APDA#: K2BGSI

---,

Technical Introduction
to the Apple IIGS

Final Draft
August 20, 1986

Apple Technical Publications

This document is in manuscript form. It does not include
• final technical corrections
• final editorial corrections

• final art work
• index

Copyright © 1986 Apple Computer, fllc. All rights reserved.

Technical Introduction to the Apple IIGS

• APPLE COMPUTER, INC.

This manual is copyriahted by Apple or by
Apple's suppliers, with all rights reserved.
Under the copyright laws, this manual may
not be copied, in whole or in part:. without
the written consent of Apple Computer, Inc.
This exception does not allow copIes to be
made for others, whether or not sold, but all
of the material purchased may be sold, given,
or lent to another person. Under the law,
copying includes translating into another
language.

© Apple Computer, Inc., 1986
20515 Mariani Avenue
Cupertino, California 95014 ·
(408) 99~1010

Apple, the Apple logo, AppleTalk, and
DuoDisk are registered trademarks of Apple
Computer, Inc.

Apple DeskTop Bus, AppleWorks, SANE,
and UniDisk are trademarks of Apple
Computer, Inc.

Macintosh of a trademark of McIntosh
Laboratories, Inc., and is being used with the
express permission of its owner.

Ensoniq is a trademark of Ensoruq, Malvern,
Pa.

Simultaneously published in the United
States and Canada. · . .

2

Contents

Contents

8 Foreword
9 Notation and conventions

10 New terms
10 Special messages

11 Chapter 1: Introduction to the Apple IIGS
11 The features of the Apple IIGS

II A more powerful Apple IT
13 Apple II compatiblity
14 Similarities to the Macintosh
15 For program developers
15 The Apple JIGS Toolbox
16 Apple JIGS Programmer's Workshop
16 Apple JIGS programming languages
17 The Apple IIGS technical manuals

19 Chapter 2: Hardware features
19 Apple IIGS technology
20 Microprocessor features
21 Sixteen-bit processor
22 Two operating speeds
23 Memory features
23 Apple II main and auxiliary memory
25 Memory expansion
26 Display features
26 RGB and composite video
27 Text with color
27 Apple JI graphics
28 Super Hi-Res graphics
30 Sound capabili ties
30 Single-bit sound
31 Digital synthesizer
32 Built-In clock

33 Chapter 3: I/O features
33 I/O expansion slots
33 Slots on the Apple JIGS

34 Apple II slot memory
34 Slot I/O space
35 Slot ROM space
35 Expansion ROM space

3

Technical Introduction to the Apple llGS

36 Slot RAM space ~ ,

36 Finding the slot number
37 Serial I/O ports
37 Apple II serial ports
38 Serial-pOrt commands
40 Terminal emulation
41 New serial- port features
41 I/O buffering
41 Background printing
42 AppleTalk interface
42 Serial-port compatibility
43 Built-in disk port
43 SmanPort and Protocol Converter
44 Game I/O connectors
44 Apple DeskTop Bus
45 Detached keyboard
45 Mouse
45 DeskTop Bus fmnware

47 Chapter 4: Firmware features
47 Resident desk accessories
47 Control Panel
48 Alternate display mode
48 The Monitor
48 U sing the Monitor
49 Monitor commands
49 New Monitor features
50 New commands
50 Improved display
50 Extended memory addressing
50 Mini-Assembler and Disassembler
51 Monitor I/O firmware
51 Standard I/O links
52 Input routines
53 Output routine
53 Other routines
53 Interrupt support

55 Chapter 5: The Apple IIGS Toolbox
55 What's the Toolbox?
55 Apple IIGS Toolbox compared with Macintosh Toolbox
56 Similarities
56 Differences
58 Suggestions for programmers
58 Making calls [0 the Toolbox

4

The tool sets
The big five

The Tool Locator
The Memory Manager
QuickDraw II
The Event Manager
Miscellaneous tools

The desktop tools
The Menu Manager
The Window Manager
The Control Manager
LineEdit
The Dialog Manager
The Desk Manager

Mathematical tools

59
59
59
59
60
60
61
61
61
61
62
62
62
63
63
63
64
64
64
64
64
65
65
65
65

Floating-point numerics (SANE)
Integer Math Tool Set

The Print Manager
Specialized tools

The Sound Manager
The DeskTop Bus tools
The Scheduler
Text Tool Set
Standard File Operations Tool Set
The Scrap Manager

67 Chapter 6: Architecture of the Apple IIGS
67 The design process
67 Starting point: the Apple II
68 Adding a faster processor
69 Memory on the Apple IIGS
69 Faster memory
70 Memory shadowing
70 Memory maps
71 Memory for standard Apple II programs
71 Memory for new programs

73 Chapter 7: Program environments
73 Environment options
73 Microprocessor options
74 Microprocessor modes
74 Register sizes
74 Bank register values
74 Stack and direct page
75 Execution speeds

5

Contents

Technical Introduction to the Apple IIGs

75
76
76
77
77
77
78
79

Language card and J}O spaces
Implications for intenupts

Standard Apple II display memory
Super Hi-Res display memory

Shadowing
Linear memory map

Mixing environments
Environment summary

81 Chapter 8: Programs and the Apple JIGS
81 Levels of program operation
81 Program control of the hardware
82 Using the Apple II fmnware
83 Using the Apple IIGS Toolbox
83 Apple IIGS operating systems
84 The System Loader
85 Apple II compatibility
85 Running existing programs
85 Enhancing existing programs

87 Chapter 9: Apple IIGS development environment
87 Program modularity
87 Object files and load files
88 Programming languages
88 Assembler
88 C compiler
89 Other compilers
89 Apple IIGS Programmer's Workshop
89 Shell
90 Editor
90 Linker
91 Debugger
91 Utilities

93 Appendix A: Roadmap to the Apple JIGS technical manuals
95 Introductory manuals
95 Machine reference manuals
96 The Toolbox manuals
96 The Programmer's Workshop manual
97 Programming-language manuals
97 Operating-system manuals
97 All-Apple manuals

6

'- /

.... ,.

Contents

99 Appendix B: Summary of program environments

101 Glossary

7

Technical Introduction to the Apple llGS

Foreword

The Apple IIGS™ personal computer is an Apple II with many advanced hardware
features, new fmnware features, and a software toolbox, similar to the toolbox in the
Macintosh™. To describe the many different aspects of the Apple IIGS, there are several
technical books. Together, those books make up the Apple IIGS technical manual suite.

As the fIrst book in the suite, this book, the Technical Introduction to the Apple llGS, has
several objectives. They are

• to describe the features of the Apple IIGs.

• to serve as a delta guide for purchasers of the Apple IIGS Upgrade for the Apple
lIe.

• to explain the general design of the APple IIos.

• to introduce hardware designers to the Apple IIoS.

• to describe the different program environments in the Apple IIGS.

• to introduce programmers to the Apple IIGS toolbox.

• to introduce developers to the Apple IIGS Programmer's Workshop.

A delta guide is a description of something new in
terms of its differences from something the reader
already knows about. The name comes from the way
mathematicians use the Greek letter della (6) to
represent a difference.

The Apple JIos is an Apple II with a difference---or rather several differences. Those
differences are particularly important to the person who purchases a Apple IIos Upgrade,
which adds the features of the Apple IIGS to an Apple IIe. By providing technical
information about the added features, the Technical Introduction serves as a delta guide for
the upgraded Apple IIe.

Where the Apple II GS Owner' s Manual describes the Apple IIGS from the point of view of
the user, the Technical Introduction describes the Apple IIGS from the point of view of the
application program. In other words, it describes the things the programmer has to
consider while designing a program, such as the operating features the program uses and
the environment in which the program runs.

Like Gaul, the set of all programmers starting out on the Apple IIos is divided into three
parts:

• programmers who are familiar with one or more computers in the Apple II family,

• programmers who are familiar with the Apple Macintosh, and

• programmers who are not familiar with either line of Apple computers.

8

'---...

Foreword

The Technical Introduction addresses all three ldnds of programmers. That means the
book often describes features of the Apple IIGS that are also found on some other Apple
machines and so are already familiar to some programmers. To make it easy to skip over
such descriptions, they are labeled either as Apple II or Macintosh information.

Chapter 1 of the Technical Introduction starts by listing the features of the Apple IIGS,
with emphasis on the new features that make the Apple IIGS more powerful than earlier
models of the Apple II. It also contains a list of the features that provide compatiblity with
those earlier models and a list of the features that resemble those of the Macintosh. The
latter part of the chapter discusses aspects of the Apple IIGS that will be of interest to
developers: the Apple IIGS Toolbox, the programming languages, the Apple IIGS
Programmers Workshop, and the technical manuals.

The next three chapters describe the features listed in Chapter 1. Chapter 2 describes the
hardware, Chapter 3 describes the I/O features (which involve both hardware and
firmware) , and Chapter 4 describes the other firmware.

Chapter 5 introduces an important new software feature of the Apple rrGs: the Toolbox,
which is a set of built-in program tools. The Apple IIGS Toolbox supports the desktop
environment and makes it easier for application programs to take advantage of the new
hardware features.

The desktop environment is a set of program
features that make user interactions with an
application resemble operations on a desktop. The
user selects objects or commands by using the mouse
to move a pointer on the screen.

Chapter 6 explains the design of the Apple IIGS, including a summary of the machine's
architecture and a description of its memory features.

Chapter 7 describes the different program environments on the Apple IIGS, that is, the
different operating features and the way they are used by different types of programs.

Chapter 8 describes other programming issues such as program compatibility with earlier
models of Apple II.

Chapter 9 introduces software developers to the Apple IIGS Programmer' s Workshop
(CPW), which is a complete development system including an editor, compiler, and linker.

The glossary lists technical terms used in this book. Some of the terms are also defined in
marginal glosses near where they first appear in the text.

There are two appendixes. Appendix A, "Roadmap to the Apple IIGS Technical
Manuals," tells about the other technical manuals and helps you decide which ones you
need. Appendix B, "Summruy of Program Environments," is a summary of information
from Chapter 7, "Program Environments." .

9

Technical Introduction to the Apple lles

Notation and conventions
This manual has a few special ways of indicating a term or a piece of information that is
different in some way.

New terms

The first time a specialized term appears in this manual it is printed in boldface. All such
terms are defmed in the glossary at the back of the book. Some of them are also defmed in
marginal glosses, as shown in the next section.

Some terms that you may already know are used a little differently in this book. You
should be aware of these.

Apple II: Any of several computers in the Apple II family, which is made up of
the Apple II, the Apple II Plus, the Apple lIe, the Apple IIc, and the Apple DGs.

Standard Apple II: Any computer in the Apple II family except the
Apple IIGs.

S-bit Apple IT: Another way of saying standard Apple II. All those computers
have 8-bit microprocessors.

64K Apple II: Any standard Apple II that has at least 64K of RAM. That
includes the Apple IIc, the Apple lIe, and an Apple II or Apple II Plus with 48K
of RAM and the Language Card installed.

128K Apple II: Any standard Apple D with both main and auxiliary 64K banks
of RAM. That includes all models of the Apple lIc and some models of the
Apple De, including those with the Extended 8O-Column Text Card installed.

Special messages

Certain types of information are set off in special ways in this book. This is done in three
ways: marginal glosses, notes, and important items.

A marginal gloss contains either a definition of a
term appearing in bold-face in the text or a
cross-reference either to another part of this book or
to another book.

Note: A note like this usually contains information that is interesting but not
necessary for an understanding of the main text. Notes have boldface labels such
as Note or Reminder. Notes that provide background information about the
Apple II or Macintosh family are labeled Apple II or Macintosh.

Important: An item like this- labeled Important--contains information that
could keep you from causing the computer or its sofTWare to malfunction.

10

Foreword

11

Technical Introduction to the Apple IIGS

12

Chapter 1

Introduction to the Apple IIGS

The Apple IIGS personal computer is a high-powered addition to the Apple II family.
Like Janus , the god of doorways, the Apple IIGS looks in two directions. First, it looks
toward the future: with its many high-performance features, such as improved color
display, advanced sound system, 16-bit microprocessor, and larger memory, the
Apple IIGS makes it possible for future application programs to be more powerful.
Second, the Apple IIGS looks toward the past: because it has the features of the Apple lIe
and the Apple IIc, it can run most of the programs written for those computers.

The features of the Apple IIGS
The Apple IIGS has more features than any earlier Apple II. So that you can get an overall
idea of what the Apple I1GS is, this section lists its features .

Note: The tables that follow are only summaries; to learn more about individual
features , please keep reading. Chapters 2, 3, and 4 describe the hardware features,
I/O features , and firmware features, respectively.

A more powerful Apple II

The easiest way to describe the Apple IIGS is to list all its features. In addition to the
features of the Apple lie and the Apple IIc, the Apple IIGS has many new features that set
it apart from other models of the Apple II. Table 1-1 describes all the major features, both
old and new.

Note: Specialized terms that appear in boldface are defined in the glossary.

13

Technical Introduction to the Apple IIGS

Table 1-1. Features of the Apple IIGS

Feature

More powerful
microprocessor

Faster operation

Larger memory

Memory expansion

Detached keyboard

Specification

65C816

CPU clock speeds of
I MHz and 2.8 MHz

256KRAM,
128KROM

24-bit address bus

78 keys

Apple DeskTop Bus® Low-cost serial I/O

RGB video

40- and 80-column
text in color

Apple II graphics

Super Hi-Res color
graphics

Desktop user
interface

Improved sound

Control panel

Enhanced Monitor

Applesoft

Built-in clock

R, G, B, and sync

Text, background,
and border colors

Lo-Res, Hi-Res,
and Double Hi-Res

True 320 x 200 or
640 x 200 resolution

Uses Super Hi-Res
color graphics and
mouse

EnsoniqTM digital
sound IC with 32
oscillators

Built-in desk accessory

Monitor in ROM

Applesoft in ROM

Time and date

14

Description

16-bit microprocessor has 24-bit
address and 6502 compatibility.

User can select either of two speeds:
the standard I MHz speed of the
Apple II, or fast 2.8 MHz speed.

Built-in memory includes the features
of a 128K Apple II.

Expansion card can expand RAM
to as much as 8 megabytes.

Separate keyboard includes cursor keys
and numeric keypad.

Suppons detached keyboard, mouse,
and additional I/O devices.

Provides both analog RGB and
NTSC video outputs.

Text, background, and border can be
any of sixteen colors (only with RGB).

Standard Apple II graphics, including
Double Hi-Res as on 128K models.

Improved graphics with up to 16 colors
per scan line and up to 256 colors on
screen, out of 4096 possible colors.

Built-in Toolbox suppons desktop
interface with mouse, menus,
and windows.

Digital sampling synthesizer suppons
15 independent voices. (Apple IIGS
also retains single-bit sound used in
other Apple II's, adds volume control.)

User can set machine parameters for
display, operating speed, serial ports,
and disk drives.

Handles l6-bit and 24-bit addresses,
assembles and disassembles 65816 and
6502 instructions, performs 32-bit
arithmetic; includes low-level I/O
routines for display and keyboard.

Applesoft with modifications for
lower-case and 80-column operation.

Clock has battery for continuous
operation.

Feature Specification

Built-in serial pons Two standard serial
pons

Built-in AppleTaik

Built-in disk pon

Expansion slots

slot.)

GameI/O

Uses one serial port

Disk I/O port using
custom Ie

Seven slots for
peripheral cards

External 9-pin jack,
internal 16-pin socket

Apple II Compatibility

Chapter 1: Introduction to the Apple IICS

Descri ption

Serial pons suppon modems, printers,
and Apple Talk®. (User can still use
serial card in slot.)

No peripheral card required. User
can select either serial I/O port to use
for AppleTalk.

User can select built-in disk pon, disk
interface cards in slots, or both, for as
many as six drives at one time.

Expansion slots like those on Apple lIe.
(Apple IIGS does not have auxiliary

Suppons all existing game hardware.
(Some new devices use Apple DeskTop
B us instead.)

Even though the Apple IIGS has many powerful new features, it is imponant to remember
that it is an Apple II. That means that most existing programs and peripherals as well as
future programs developed for the Apple lIe and Apple lIc will run on the Apple IIGS.

The Apple IIGS has several features that make it compatible with earlier models of the
Apple II. Table 1-2 is a list of those features, along with the other models of Apple II that
also have them.

15

Technical Introduction to the Apple IIGS

Table 1-2. Apple II features of the Apple IIGS

Apple IIGS feature

6502 instruction set

128KRAM

Applesoft in ROM

Monitor in ROM

40- and 80-column text

Lo-Res color graphics

Hi-Res color graphics

Double Hi-Res color
graphics

Built-in serial ports

Built-in disk port

Expansion slots (7)

Game lIO port

Description

65816 has emulation mode for
running 6502 programs

Main and auxiliary 64K banks, with
language-card and lIO spaces

Applesoft BASIC interpreter with
lower -case and 80-column features

Supports 10w-IevelllO and
program development

Black-and-white text displays (text in
color only on Apple IIGS with RGB)

48 x 40, 16 colors

280 x 192, 6 colors

560 x 192, 16 colors

Two RS-232-compatible ports, for
modem, printer, other serial devices

Using IWM chip, supports both
5.25-inch and 3.5-inch disk drives

Slots for peripheraillO and
expansion cards, in addition. to
built-in ports

9-pin and 16-pin connectors for
game paddles and sketch pads

Similarities to the Macintosh

Other models

All Applell

IIc, 128K lIe

All Apple II

All Apple II

IIc, lIe with 128K
or 80-column card

All Apple II

All Apple II

IIc, 128K lIe

IIc (similar)

lIc

II , II Plus, lIe

lIc, lIe

Comparison of the hardware features of the Apple lIGS and the Macintosh will reveal more
differences than similarities. Among the differences are: The Apple IIGS has a 65C816
microprocessor, while the Macintosh has a 68000; the Apple lIGS has a color display, the
Macintosh is black-and-white; the Apple IIGS has slots, the Macintosh hasn't. On the
other hand, while the two machines' operating systems are different, they both support
hierarchical disk directories. And some of the hardware features are the same, such as the
detached keyboard and the mouse.

While the Apple IIGS itself doesn't work like the Macintosh, applications on the
Apple IIGS will bear a strong resemblance to Macintosh applications. The main reason is
the use of the same desktop user interface on both machines. The built-in Apple lIGS
Toolbox, like the Macintosh Toolbox, makes it easy for applications to support the desktop
interface. Table 1-3 summarizes the major points of similarity, as well as some of the
differences, between the two machines. The resemblances are described further in Chapter
5, "The Apple IIGS Toolbox."

16

Chapter 1.' Introduction to the Apple Ilcs

In applications that use the desktop user
interface, commands appear as options in pull­
down menus. and material being worked on appears in
areas of the screen called windows. The user selects
commands or Olher material by using lhe mouse to
move a lXlinter around on the screen.

Table 1-3. Apple IlGS compared with Macintosh

Feature Apple IIGS version

Desktop user Pull-down menus; data in
interface overlapping windows

Desktop support Built-in Toolbox
for applications

Desktop display Super Hi-Res color graphics

Display resolution 640 x 200

Command selection Apple mouse, keyboard
optional

Keyboard Detached, with keypad and
cursor keys

Built-in serial ports Two ports, using the Zilog
SCC chip and RS-422 drivers

Built-in disk port 5.25-inch and 3.5-inch drives,
using the Apple IWM chip

Operating system ProDOS® (hierarchical ftles)

External hard disk Hard Disk 20SC with SCSI
interface card

For program developers

Macintosh version

Pull-down menus; data in
overlapping windows

Built-in Toolbox

Bitmapped black-and-white
graphics

512 x 342

Apple mouse, keyboard
optional

Detached, with keypad and
cursor keys on Macintosh Plus

Two RS-232 ports, using the
Zilog SCC chip

3.5-inch drives only

Hierarchical File System

Hard Disk 20 (Hard Disk 20SC
on Macintosh Plus)

The Apple IIGS has several features that are important for developers. First of all, there is
the Apple IIGS Toolbox, a collection of built-in program routines that can be called by
applications. Then there is the program development environment, the Apple IIGS
Programmer's Workshop (CPW), which includes the language compilers and their
environment. With the built-in toolbox, the language compilers, the workshop programs,
and the technical manuals that describe them, developers have everything they need to
develop applications for the Apple IIGS.

The Apple IIGS Toolbox

Like the Macintosh, the Apple IIGS has a built-in toolbox whose routines can be called by
applications. The toolbox routines include mouse operations with menus and windows to
support the desktop user interface.

17

Technical Introduction to .the Apple llGS

Not all of the tools are resident in ROM; some of them are loaded from disk and reside in
RAM. The calling mechanism is the same regardless of where in memory a tool resides. A
tool can even be in ROM in an early version of the system and in RAM in a later version; an
application developed on the early version will run on the later version without
modification.

The Apple IIGS Toolbox includes many functions like the ones in the Macintosh Toolbox,
but they are not all the same. There are important differences between the machines, and
those differences affect the nature and operation of the tools.

For a summary of the Apple II OS Toolbox and more
about the differences between the 100is in the
Apple nos and the Macintosh, please read Chapter 5,
"The Apple IIO S Toolbox." For a complete
description of the tOOlbox, see the Apple JIGS
Toolbox Reference, Volumes I and 2.

Apple IIGS Programmer's Workshop

To provide a consistent working environment, there is the Apple IIGS Programmer's
Workshop (CPW). The development environment consists of two kinds of programs: the
compiler and assembler, which have their own reference manuals, and the workshop
programs, which are all described in the Apple llGS Programmer's Workshop Reference.

The Apple llGS Programmer's Workshop is a set of programs that Apple provides to make
it easier to develop applications for the Apple IIGS. The programs in the programmer's
workshop are

• Shell

• Editor
• . Linker

• Debugger

• Utilities

For more information about CPW, please see
Chapter 9, "Apple IIOS Development Enviroument,"
and the manual Apple lIGS Programmer's Workshop
Reference.

Apple IIGS programming languages

The languages available on the Apple IIGS include 65816 assembly language and C.
Thanks to the standard object-file format on the Apple llGS, the same linker and loader can
handle program segments created in either of the available programming languages.
Because the languages are available separately, there is a separate manual for each one.

The high-level language in CPW is C. Programs written in C ~an easily include sections
written in assembly language and in Pascal. CPW C comes Wlth a standard C hbrary and a
Apple llGS interface library, which contains the tool calls.

18

--...,

Chapter I: Introduction to the Apple lles

The CPW Assembler is a full-featured macro assembler that supports the full 65C816
instruction set. (While the 65C816 instructions include those for the 6502 and the 65C02,
the assembler is not an appropriate development tool for Apple lIs that use those
microprocessors because CPW does not suppon Apple II binary load files.)

Note: The Apple IIGS has standard Applesoft BASIC in ROM for compatibility
with other Apple II's.

For more information about proglllmming on the
Apple JIGS, please see Chapter 9, "Apple IIGS
Development Environment," and then the individual
manuals Apple IIGS Programmer's Workshop
Ref erence, Apple JIGS Workshop C Reference, and
Apple Ilgs Workshop Assembler Reference.

The Apple IIGS technical manuals

To fully describe the Apple lIGS, Apple has produced a suite of technical manuals. There
are manuals that describe the Apple IIGS computer itself and other manuals that describe
the development tools. Table 1-4 lists the manuals by category. Depending on the way
you intend to use the Apple lIGS, you may need to refer only to a few of the manuals, or
you may need to refer to most of them.

For more informatiou that will help you decide which
manuals you need, please see Appendix A, "Roadmap
to the Apple IIGS Technical Manuals."

Table 1-4. Apple IIGS technical manuals

Category

Introductory manuals

Machine reference manuals

Toolbox manuals

Workshop manual

Titles

Technicaiintroduction to the Apple lleS
Programmer's Introduction to the Apple lles
Apple lles Hardware Reference
Apple lles Firmware Reference

Apple lles Toolbox Reference, Volumes 1 and 2

Apple lles Programmer's Workshop Reference

Programming- language manuals Apple lles Workshop C Reference

Operating-system manuals

All-Apple manuals

Apple lles Workshop Assembler Reference

ProD OS 8 Technical Reference
Apple IIGS ProD OS 16 Reference

Human Interface Guidelines
Apple Numerics Manual

19

Technical Introduction to the Apple JIGS

20

' -- -" Chapter 2

Hardware Features

This chapter and the following two chapters describe the features of the Apple IIos, with
emphasis on the new features. This chapter covers the hardware features, Chapter 3 covers
the I/O features, which combine elements of hardware and fmnware, and Chapter 4 covers
the rest of the firmware features.

Apple IIGS technology

The Apple lIos is the most advanced Apple II to date. It uses several large-scale
integrated circuits that are custom designed for it These ICs are surface mounted on a
four-layer printed circuit board mounted in the bottom of the case. By using large scale
custom ICs, the designers of the Apple IIoS were able to increase the machine's
capabilities with a minimum increase in manufacturing cost

Table 2-1 lists the large ICs in the Apple lIoS, including the custom ICs. Some of those
ICs are mentioned later in this chapter.

For detailed descriptions of the Apple llGS res,
consultthc Apple lIGS Hardware Reference.

21

Technical Introduction to the Apple IIGS

Table 2-1. Large·scale ICs in the Apple IIGS

Name (abbreviation)

Megarr

Slotmaker

Fast Processor Interface (FPI)

Video Graphics Controller
(VGC)

Function

Provides the basic Apple II addressing and timing

Provides addittonal address and control signals for
the expansion slots

Provides addressing and timing for fast memory;'
handles synchronization of processor and Mega II

Provides video addressing and signal generation
for Super Hi-Res display

Integrated Woz MachiJle (IWM) Controller for 5.25-inch and 3.5-inch disk drives

Sound General Logic Unit
(Sound GLU)

Digital Oscillator Chip (DOC)

Keyboard General Logic
Unit (KeyGLU)

Keyboard Microprocessor
(50740A)

Provides inteIface between the system bus and the
Digital Oscillator Chip (DOC)

Digital sampling sound generator (made by Ensoniq)

Provides interface between the system bus and the
keyboard mic~processor

Supports the Apple DeskTop Bus (interface to the
detached keyboard, the mouse, and similar devices)

Microprocessor features
The microprocessor in the Apple IIGS is a 65C816 operating in conjunction with the
custom FPI (Fast Processor Interface) chip. The 65C816 is a sixteen-bit CMOS design
based on the venerable 6502. Table 2-2 lists its main features.

CMOS is an abbreviation for Complementary Metal
Oxide Silicon, which is one of several methods of
semiconductor integrated-circuit fabrication. CMOS
devices are characterized by their low power
consumption.

22

Table 2-2. Features of the 65C816 Microprocessor

16-bit accumulator

16-bit X and Y index registers

Relocatable zero page

Relocatable stack

24-bit internal address bus

8-bit data address bank register

8-bit program address bank register

11 new addressing modes

Chapter 2: Hardware Features

36 new instructions, for a total of 91 (all 256 operation codes)

Fast block-move instructions

Ability to emulate 6502 and 65C02 8-bit microprocessors

Sixteen-bit processor

In the Apple IIGS, the 65C816 normally operates in either of two modes: 6502 emulation
mode and 65C816 native mode. Figure 2-1 shows the sizes of the registers in emulation
mode and in native mode. In emulation mode, the accumulator and index registers are 8
bits wide, and existing Apple II programs run the same as they do on any other Apple II
model. In native mode, the accumulator and index registers are sixteen bits wide. The
65C816 also has several new and more powerful addressing modes that take advantage of
its 24-bit addressing. The new addressing modes operate in either native mode or
emu lation mode, although the shorter registers in emulation mode make some of them
ineffective.

Note: Native mode can also work with 8-bit data registers, with an additional
accumulator, the B register. Apple does not recommend 8-bit native mode, but
some internal routines use it, and developers are free to use it if they choose.

In Figure 2-1, the boxes represent registers, and the sizes of the boxes correspond to the
number of bits in the registers, as indicated by the scales at the bottom of the figure.
Letters in the boxes are the names of the registers; numbers (00, 01) in boxes indicate fixed
values for those parts of the associated registers. For example, the stack pointer in native
mode behaves like a 24-bit register with the upper eight bits permanently set to zero.

23

Technical Introduction to the Apple IIGS

Figure 2-1. 65C816 registers

I
I
I

I
24

6502 Emulation Mode

00

00

PBA

00

I
16

00

00

00

01

I
I

I

PC

0000

I
8

Register length in bits

A

X

y

S

P

Two operating speeds

I
I

I

I
0

Accumulator

X index register

Y index register

Dala bank register

Stack pointer

Program slatus

Program counter

Direcl register

I
l
I
I

I
24

65C816 Native Mode

DBA

00

PBR

00

16

A

X

Y

s

PC

D

I
8

Register length in b~s

P

I
I

o

The Apple lIas normally runs its 65C816 microprocessor at a clock rate of2.8 MHz. For
programs in RAM, the effective speed is about 2.5 MHz because the hardware allocates a
few clock cycles for refreshing the RAM and cannot execute RAM instructions during the
refresh cycles. Programs in ROM are not affected by RAM refresh, so they run at the full
2.8 MHz.

Almost all programs can run at the 2.5 MHz speed on the Apple fiGS, even programs
originally written for an eight-bit Apple II. The Apple lIas can also run at the normal
Apple II clock rate, 1 MHz. There are three conditions that can cause the Apple IIas to
run at the I MHz speed:

• The user has selected normal speed on the Control Panel.

• A program is executing an instruction that uses 1 MHz memory (see the section
"Memory on the Apple fias "in Chapter 6 for a description of I MHz memory).

• A timing-dependent routine is executing; for example, one in a disk interface card.

24

. ~,-_./

Chapter 2: Hardware Features

Memory features
Thanks to the 24-bit addressing of the 65C816, the Apple IIGS has a memory space
totaling 16 megabytes. Of this total, up to 8 megabytes of memory is available for RAM
expansion, and one megabyte is available for ROM expansion. Figure 2-2 is a simplified
version of the Apple IIGS memory map.

Figure 2-2. Simplified Apple IIGS memory map

- --- - ----- - - - - Baric H..,..,..., ----------------
soo S01 C02 .. C7F CEO SE1 SFO

Systom,

110, and

Display

Momo<y

(marginal gloss) This book uses hexadecimal
numbers for memory addresses. The dollar sign
before a number signifies that the number is
hexadecimal.

r---

'--,

SFe SFE CFF

I
Firmware.

.

ROM
,

The internal memory of the Apple IIGS has two main features: it can emulate the main and
auxiliary memory banks of a l28K Apple II, and it can be expanded up to as much as
8.25 megabytes. The next two sections describe these features.

For additional information about memory on the
Apple JIGS, read the section On memory in
Chapter 6.

The letter K is the abbreviation for kilo-, meaning
thousand. In this book , K stands for kilobyte
(1024 bytes) except when dealing with memory ICs,
when it stands for kilobit-1024 bits.

Apple II main and auxiliary memory

Apple II: This section describes the way memory is used in all models , including
the Apple IIe and lic. If you are already familiar with those machines, you might
want to skip ahead to the next section.

25

Technical Introduction to the Apple lIes

The 6502 microprocessor used in the original Apple II can address up to 64K bytes of
memory. The Apple IIc and the 128K versions of the Apple lIe have 128K of memory,
which they address in two 64K banks. To distinguish the two banks, the original64K of
memory is referred to as main memory and the additional64K as auxiliary memory. In the
Apple IIGS, banks $00 and $01 work like main and auxiliary memory when running
programs written for the Apple lIe and Apple IIc.

In the original Apple II and the Apple II plus, different parts of the 64K memory space are
allocated for different purposes. Built-in ROM occupies the highest addresses, from
$DOOO to $FFFF. Addresses between $COOO and $CFFF are allocated to built· in I/O and
to the peripheral slots for I/O devices and ROM on peripheral cards. Applications use
memory in the 48K of space below $COOO, except for the video display buffers, which are
called pages. There are two text display pages and two Hi-Res graphics pages; Table 2-3
shows their locations.

Table 2-3. Standard Apple II display pages

Display page

Text Page 1

Text Page 2

Hi-Res Page 1

Hi-Res Page 2

Memory locations

$0400 - $07FF

$0800 - $OBFF

$2000 - $3FFF

$4000 - $5FFF

When Apple introduced UCSD Pascal for the Apple II, the "lower forty-eight" kilobytes of
memory was insufficient, so Apple added an expansion card with 16K of RAM. The RAM
expansion card was part of the Pascal language package for the Apple II, so it was called
the Language Card. To make 16K of RAM addressable without disturbing the memory­
mapped I/O in the $Cxxx space, Apple designed the card with two 4K banks at $Dxxx. In
the Apple lIe and the Apple IIc, the entire 64K of main RAM is installed on the main
circuit board, but the peculiar addressing of the upper banks is retained for the sake of
compatibility. Apple still refers to RAM memory between $DOOO and $FFFF that has two
banks in the $Dxxx space as language-card memory, even when it is on the main board.

(marginal gloss) The letter x in an address stands for
the range of all possible values for that digit. For
example, $Dxxx means all the addresses from $DOOO
through $DFFF.

26

Chapter 2: Hardware Features

Figure 2-3 _ 128K Apple II memory map

Main 64K Auxiliary 64K
cr---- $FFFF--

-- $COOO---f""i

1---$8000-----1

;t--- $4000 --~

~~§L_$OOOO-~~~
nt! Language card _ 110 0 User rm:I Displays

The technique for addressing the auxiliary 64K memory space also involves switching
banks, independently of the language-card bank switching. In fact, the auxiliary memory
has its own language-card space, complete with two banks at $Dxxx. (The I/O space,
$Cxxx, is the same in both main and auxiliary memory.)

Figure 2-3 is the memory map for an Apple lIc or 128K Apple lIe, showing the two 64K
memory banks and the language-card banks above $COOO.

If you arc interested in learning more about the
workings of the Apple II , you should look at the
Apple lie Technical Reference Manual.

Memory expansion
The minimum memory in the Apple lIGS is 256K. Apple II programs use 128K of that,
mapped as main and auxiliary memory; the system firmware uses parts of the other 128K.
Programs written for the Apple lIGS- that is, programs that run the 65C816
microprocessor in native mode, thereby gaining the ability to address more than 128K of
memory--can use up to about 176K of the 256K. The rest is reserved for displays and for
use by the system firmware.

The Apple IIGS also has a special card slot dedicated to memory expansion. All the RAM
on a memory expansion card is available for Apple lIGS application programs that call the
Memory Manager. Expansion memory is contiguous: its address space extends
without a break through all the RAM on the card. Unlike the Apple lIe, expansion RAM
on the Apple IIGS is not limited to use as a RAM disk; program code can run in any part of
RAM.

The Memory Manager is part of the Toolbox. Its
job is to allocate memory so that applications and
desk accessories can run without clobbering each
other.

27

Technical Introduction to the Apple llGS

Note: The memory expansion slot on the Apple IIGS is not like either the
expansion slots or the auxiliary slot on the Apple ITe. Memory expansion cards
designed to run in either of those slots will not work in the memory expansion slot.
(A memory expansion card designed to run in an Apple II expansion slot will run
in an expansion slot in the Apple ITGS.)

There can be several different sizes of memory expansion card for the Apple ITGs. Using
presently-available 256K (kilobit) RAM chips, a memory expansion card can have up to a
megabyte of additional RAM. When one~egabit RAM chips become available in
quantity, a memory expansion card can have up to four megabytes of RAM. (The
Apple IIGS will accept expansion RAM up to eight megabytes.) The additional RAM maps
into contiguous 64K banks starting with bank $02, as shown earlier in Figure 2-2.

K means kilobyte except when it means kilobit,
1024 bits. Similarly, a megabit is 1024 lcilobits.
and a megabyte is 1024 kilobytes.

In addition to expansion RAM, the memory expansion cards can also have up to a
megabyte of ROM. The additional ROM occupies memory from bank $FD downward to
bank $FO. Portions of the top two banks of expansion ROM are allocated for system
fIrmware expansion. The remaining expansion ROM is supported as ROM
disk-permanent storage for applications, which the system handles like disk fIles . For
additional information about memory, see Chapter 6.

Display features
To start with, the Apple IIGS has the standard Apple II video modes, both graphics and
text, and the text display is enhanced with a choice of colors for borders, text, and
background. In addition, the Apple IIGS has built-in RGB video and two new Super
Hi-Res graphics modes.

RGB and Composite Video

The Apple IIGS has both RGB and composite (NTSC) video outputs. Either type of
video monitor can be used with the Apple ITGS, although an RGB monitor is required for
8O-column text in color.

RGB is an abbreviation for red-green-blue, a way
of displaying color video by transmitting the three
primary colors as three separate signals. With TTL
RGB, only a rew colors are possible; with analog
R G B, the color signals can take on any values
between their upper and lower limits, for a wide range
of colors.

28

NTSC is the abbreviation for National Television
Standards Commillee and refers to a method for
transmitting color video information for home
television receivers. That method is also called
composite because it combines all the video
infonmation, including color, into a single signal.

Chapter 2: Hardware Features

Note: A monochrome monitor will work on the Apple IIGs. All the user has to
do is connect it to the composite video output jack and use the control panel to set
the display type to monochrome.

The RGB video from the Apple IIGS is analog RGB. With an appropriate RGB
monitor, the Super Hi-Res mode can display sharp graphics with any of 4096 colors. For
the sake of compatibility with programs that generate graphics for composite monitors, the
Hi- Res and Double Hi-Res displays on the Apple IIGS look like composite video even on
an RGB monitor.

Historical note: At one time, Apple provided an RGB adaptor card and an RGB
monitor, the AppleColor 100, for the Apple II. Using that system, Hi-Res and
Double Hi-Res color displays were restricted to a horizontal resolution of only 140,
a restriction that does not apply to the Apple IIGs. Note that an AppleColor 100
Monitor requires separate digital signals, so it will not work on the Apple IIGS.

Text with color

The standard video modes on the Apple IIGS include three enhancements: colored text,
colored background, and colored border. For displaying 4O-column or 8O-column text on
an RGB monitor, the user can select any of sixteen standard colors for text and any other of
the sixteen colors for background. (The Control Panel won't let the user set the text and
background colors the same.) Any of the sixteen colors can be used for the border, that is,
the visible part of the display outside the area used for text and graphics.

Note: ColQred text works only with an RGB monitor. The composite video
output automatically switches to monochrome for text displays, making the text,
background, and border colors appear as black, white, or shades of gray. This
feature reduces color fringing and improves the legibility of text displayed on
composite color monitors.

By the way: The unused border around the video display is wide enough that
information on the edge of the display won't be lost when viewed on video
monitors with their picture size controls set too big.

Apple II graphics

Apple II: This section describes graphics features found on many other models of
the Apple II. If you are already familiar with the Apple II, you might wanl to skip
ahead to the section "Super Hi-Res Graphics."

29

Technical Introduction to the Apple llGS

The Apple lIoS includes the same graphics displays found on the Apple IIc and 128K
Apple lIe: Lo--Res, Hi-Res, Double Lo--Res, and Double Hi-Res. Table 2-4 shows the
specifications for these displays.

Table 2-4. Apple II graphics displays

Number
Display mode Resolution of colors

Lo--Res 40 x 48 16

Hi-Res 280 x 192 6

Double Lo--Res* 80 x 48 16

Double Hi-Res* 560 x 192 16

*Not supported by firmware.

Restrictions

(none)

Some colors cannot appear
side-by-side in small areas of
the display.

(none)

(none)

Like all other Apple II's, the Apple IIos displays Lo--Res and Hi-Res color graphics.
Applesoft BASIC, in ROM, includes simple routines for setting colors and drawing dots
and lines. The Apple lIas also has the double graphics modes, but, like other Apple lIs,
it doesn't have graphics firmware for those modes.

Note: For the standard graphics modes-Lo-Res, Hi-Res, and Double
Hi- Res--the Apple II uses a simple trick to generate color on a composite monitor.
The individual dots in the graphics are spaced just right to stimulate the circuits that
the monitor uses to extract color information from a composite signal. (In Lo--Res,
the large dots in the display are made up of smaller dots that blend together on the
screen.) Different combinations of dots make different colors.

Super Hi-Res graphics

In addition to the standard video modes found on the Apple lIc and Apple lIe, the
Apple IIGS also has two new Super Hi-Res graphics modes. The new display modes take
advantage of the analog RGB video output to produce high--<!uality, high-resolution color
graphics. Table 2-5 lists the specifications of the two new graphics display modes.

Table 2-5. Super Hi-Res graphics modes

Resolution: Bits per Colors
Mode Horiz. Vert pixel per line

320 320 200 4 bits 16

640 640 200 2 bits 16*

*Different pixels use different parts of the palette.

Pixel is short for piclure elemelll. A pixel
corresponds to the smallest dot you can draw on the
screen.

30

Colors Colors
on screen possible

256 4,096

256* 4,096

'-..

Chapter 2: Hardware FeanlTes

In the new Super Hi-Res graphics modes, colored dots have the same horizontal resolution
as black- and-white dots. (That's different from the standard Hi- Res and Double Hi- Res
graphics modes, where colored dots are effectively wider than black-and-white dots.)
Each dot on the Super Hi- Res screen corresponds to a pixel, and pixels are indivisible: the
screen does not display individual bits.

Each pixel has either a 2-bit (640 mode) or a 4-bit (320 mode) value associated with it, as
shown in Figure 2-4. The pixel values select colors from programmable color tables called
palettes. A palette consists of sixteen entries, and each entry is a 12-bit value specifying
one of 4,096 possible colors. In 320 mode, color selection is quite simple: each pixel
consists of four bits, so it can select anyone of the sixteen colors in a palette.

Figure 2-4. Bits in pixels

Bits in byte

7 6 I 5 I 4 I 3 I 2 0

640 mode I Pixel1 I Pixel2 I Pixel3 Pixel4

320 mode I Pixel1 I Pixel2

In 640 mode, color selection is more complicated. The 640 pixels in each horizontal line
occupy 160 adjacent bytes of memory, and each byte holds four pixels that appear
side- by-side on the screen. The sixteen colors in the palette are divided into four groups
of four colors each. The first pixel in each horizontal line can select anyone of four colors
from the third group of four in the palette. The second pixel selects from the fourth group
of four colors in the palette. The third pixel selects from the first group of four colors, and
the fourth pixel selects from the second group, as shown in Figure 2-5. The process
repeats for each successive group of four pixels in a horizontal line. Thus, even though a
given pixel can be one of only four colors, different pixels in a line can take on any of the
sixteen colors in a palette. Using a technique called dithering, software for 640 mode can
take advantage of this color- selection scheme to display 16-color graphics on the same
screen with S<H:olumn text.

Dithering is a technique for alternating the values
of adjacent pixels to create the effect of morc colors.

31

Technical Introduction to the Apple lles

Figure 2-5. Color selection in 640 mode

Pixel Value Palette
0 Color1

Pixel3
1 Color2

2 Color3

3 Color4

0 Color5

Pixel4
1 Color6

2 Color7

3 Color8

0 Color9

Plxel1
1 Color10

2 Color11

3 Color12

0 Color13

Pixel2
1 Color14

2 Color15

3 Color16

To further increase the number of colors available on the display, there can be as many as
sixteen different palettes in use at the same time. Each of the 200 horizontal lines of pixels
can use anyone of the palettes, giving as many as 256 different colors at once. All the
palette information occupies memory adjacent to the display data; a picture and its palette
are normally saved together.

Note: In 320 mode, there is a graphics fill option that enables a program to fill any
portion of a horizontal line with a new color simply by setting marker values on the
boundaries of the fill area. Because individual windows usually don't control the
entire width of the screen, this technique is not useful in a window environment.
On the other hand, if you are writing a graphics package that uses the entire screen,
you might want to consider using it.

Sound capabiliti~s
The Apple IIGS has more powerful sound-generating circuits than any previous Apple
computer, although programs that generate sounds with the single-bit sound output of
earlier models of the Apple II will still work on the Apple IlGs.

Single-bit sound

The standard Apple IT sound output consists of a single bit, and programs produce sounds
by switching that bit on and off. In the Apple IIGS, you can also adjust the volume of the
sounds generated this way, by using the Control Panel or by making a call to the sound
tools.

32

Chapter 2: Hardware Features

Digital synthesizer

In addition to the old single- bit sound output, the Apple IIGS has a new digital sound
system that includes a special-purpose synthesizer IC caIled the DigitaI Oscillator Chip, or
DOC for short. The DOC, which is made by Ensoniq and used in their line of music
synthesizers, generates sound wavefonns from digitaI samples stored in RAM. Using the
DOC, the Apple IIGS can produce multi-part, multi-voice music and other complex
sounds without tying up its main processor.

Figure 2-6 is a block diagram of the sound system of the Apple IIGS. The sound system
consists of the DOC, an audio amplifier and internaI speaker, a connector for an external
amplifier and speaker, 64K of independent RAM for storing sound samples for the DOC,
and a custom IC, the Sound GLU (General Logic Unit). The Sound GLU chip functions
as the system interface to the DOC; in addition, it gives the Apple IIGS the ability to control
the volume of sound from the old-style single-bit output.

Figure 2-6. Apple IIGS Sound System

System
Data
Bus

Sound
GLU

.. .. . ,
~

64Kx 8
RAM

.. .. ",

~
;

i
,

. ... ,

~

Ensoniq
DOC

... ·· ,, ' w ' ... , . '"

l
i 1:(Audio ,

Amplifier
~ ,
~ , , Sound
t Connector
:~

... :::

The DOC contains thiny-two individual oscillators, each of which generates a signal by
stepping through a table of digital samples of a sound. In the Apple IIGS, one oscillator is
used as a dedicated clock for the DOC and one is reserved for future use, leaving thiny.
Even though each oscillator can produce sound independently, it takes two oscillators to
produce a continuous instrumental voice, so in nonnaI use the DOC can produce up to
fifteen voices.

The DOC also has a single anaIog- to-digital converter (ADC). If a properly--conditioned
audio signal is connected to the input to the ADC, the DOC can record digitaI samples of
sounds for later playback by the DOC's oscillators. (You can condition the signal by using
a low-pass filter with a cutoff no higher than 14kHz or by adding a sample- and- hold
circuit that is synchronized to the DOC's clock.)

Refer to the Corlland Hardware Reference for details
aboulthe sound system and the DOC.

33

Technical Introduction to the Apple II GS

Built-in clock
The Apple lIas has a built-in real-time clock with battery back-up during power
interruptions. The user sets the time and date by means of the Control Panel. ProDOS
uses the clock to set date and time in files.

Note to Developers: The Apple lIas clock does not use the same commands as
the various third-party clock peripherals. Applications can call ProDOS and get the
time the same way as on an Apple IIe, or they can determine which system they are
running on and use the calls appropriate to the"clock on that system.

34

Chapter 3

1/0 features

This chapter describes the I/O features, which have both hardware and finnware aspects.
As in Chapter 2, the emphasis is on the new features. You can [md further descriptions of
the I/O features in the manuals Apple IIGS Hardware Reference and Apple IIGS Firmware
Reference.

I/O expansion slots
Except for the Apple IIc, all models of the Apple II have I/O expansion slots. The original
Apple II and the Apple II Plus had eight slots, numbered 0 through 7. The Language
Card nonnally occupied slot 0 on those machines. On later models, including the
Apple IIGS, the language-card memory is built in and there are only seven slots, numbered
I through 7.

Slots on the Apple IIGS

The I/O expansion slots are designed to accept circuit cards that contain hardware and
finnware to control and communicate with peripheral devices. The slots are not simply I/O
ports; a card in a slot has access to the clock and control signals, the data bus, and the
low-order sixteen bits of the address bus. The same signals are available on all the slots,
except for the color subcarrier, which is only on slot 7. In addition to the common signals,
each slot has its own select signals, which are separately decoded for each slot. The slots
on the Apple IIGS are almost identical to the slots in an Apple lIe, and can accept most
Apple II peripheral cards. (Two of the slot signals, Inhibit and Sync, work differently on
the Apple IIGS, and there is a new signal, M2Select; please refer to the Apple lIGS
Hardware Reference for more infonnation.)

As far as the slots themselves are concerned, any peripheral card can operate in any slot.
However, it has become conventional to use certain cards in certain slots: for example,
printer interface in slot I, 8O--column display in slot 3, and disk controllers in slots 5 and 6.
Even thouglI later models of Apple II lIave these I/O interfaces built in, compatibility
requires them to have ilie same kind of progrdm access that was originally designed for
cards in slots.

Peripheral-card compatibility: Only the low-order sixteen bits of the 24-bit
address bus are available on the expansion slots. Peripheral cards that derive their
enabling signals by decoding the address bus will not work in the Apple ITGS
unless they also use one of the select signals to verify that the address on the bus is
in the appropriate 64K bank for I/O (that is, bank $EO).

35

Technical Introduction to the Apple IIGS

Apple II slot memory

This section briefly describes the memory spaces allocated to the slots. Except for their
location in bank $EO and the consequent need for shadowing to be on for old-style
programs to work, the slot memory locations in the Apple lIas are the same as on any
other model of the Apple II. If you need all the details about slot memory, refer to the
manual Apple lIGS Hardware Reference.

Shadowing for 110: In the Apple lIaS, I/O uses memory locations in bank
$EO. To make those locations available to 6502-based Apple II programs, which
mn in banks $00 and $01, the Apple lIas has a feature called I/O shadowing that
makes load and store instructions to locations in bank $00 also happen in bank $EO.
For more information about shadowing, see the section "Memory Shadowing" in
Chapter 6.

Apple II: The rest of this section describes the way the expansion slots work on
all models of the Apple II. If you are already familiar with the Apple II, you might
as well skip ahead to the next section.

The microprocessor in an Apple II does all its I/O through memory locations. To make
the slots accessible to the processor, parts of the memory space are allocated to the slots.
In addition to the memory locations used for acrualI/O, there are memory spaces for
programmable memory (RAM) and for read-only memory (ROM) on the cards, as
described below.

Slot 110 space

Each expansion slot has the exclusive use of 16 memory locations for data input and
output. The 16 locations for a given slot have addresses $C08x + sO, where x stands for
hexadecimal values from 0 to F and s stands for the slot number. Figure 3-1 shows the
allocation of I/O addresses for the slots: for example, the I/O addresses for slot 3 are
$COBO - $COBF. Whenever one of those addresses appears on the address bus, the slot
hardware activates the device select signal in that slot. The circuits on the card can use the
device select signal and the low-order 4 bits of the address to activate devices on the card.

Figure 3-1. Slot I/O device locations

$COFF
$CoFO
$COEO
$CODO
$COCO
$COBO
$COAO
$C090
$C080

Slot 7 1/0
Slot 6 110
Slot 5 1/0
Slot 4 110
Slot 3 1/0
Slot 2 1/0
Slot 1 VO

(system)

36

Chapter 3: 110 Features

Slot ROM space

Each expansion slot has the exclusive use of one 256-byte page of memory space. Most
peripheral cards use this space for ROM or PROM for storing the driver routine that
controls the operation of the peripheral device.

PROM stands for Programmable Read-Only
Memory, a type of ROM device designed to be
programmed after fabrication, unlike ordinary ROM
devices, which are programmed during fabrication.

The 256 ROM locations for a given slot have addresses $CsOO, where s stands for the slot
number. Figure 3- 1 shows the allocation of ROM addresses for the slots: for example,
the ROM addresses for slot 3 are $C300 - $C3FF. Whenever one of those addresses
appears on the address bus, the slot hardware activates the I/O select signal in that slot.
That signal enables the ROM device on the card, and the low-order 8 bits of the address
bus determine which of the 256 locations is being addressed.

Figure 3-2. Slot ROM locations

$CFFF

$C800
$C700

$C600

$C500
$C400

$C300

$C200

$C100

$COOO

Expansion ROM

Slot 7 ROM
Slot 6 ROM
Slot 5 ROM
Slot 4 ROM
Slot 3 ROM
Slot 2 ROM
Slot 1 ROM

Switches and slot RAM

Expansion ROM space

In addition to the small areas of memory allocated to each slot, there is a 2K memory space
from $C800 to $CFFF that can be used by a card in any slot. More than one peripheral
card can have expansion ROM on it, but only one of them can be active at one time.

Each card that has expansion ROM on it must also have a circuit that uses the I/O select and
I/O strobe signals on the slot to enable the ROM. The card must also have a circuit to
disable the ROM so that other cards can use the same addresses for their expansion ROM.

37

Technical Introduction to the Apple IIeS

For more details, refer to the chapter "Programming
for Peripheral Cards" in the Apple lIe Technical
Reference Ma.nual.

Slot RAM space

Besides the various locations allocated for devices on peripheral cards, a few locations in
main memory are reserved for variables used by the peripheral--{;ard routines. These
locations are called the screen holes. Each slot gets one byte in each of the eight small
blocks of text-page memory, as shown in Figure 3-3. To determine the addresses of the
eight RAM locations assigned to a particular slot, add the slot number to the starting
addresses of the blocks. For example, the RAM locations for slot 1 are $0479, $04F9,
$0579, $05F9, $0679, $06F9, $0779, and $07F9.

Screen Holes: The text display buffer (text Page 1) occupies memory from $400
to $7FF, but there are locations in that range that are neither displayed nor modified
by the fmnware's display subroutines (for example, COUT1). Those locations are
called the screen holes, and are used for temporary storage either by I/O routines
running in peripheral--{;ard ROM or by fmnware routines addressed as if they were
in card ROM. (Application programs never use this area of memory.)

Figure 3-3. Screen hole locations

$00/80

$0780

$0700

$0680

$0600

$0580

$0500

$0480

$0400

$28/AS

Text row 7

Text row 6

Textrow5

Text row 4

Text row 3

Text row 2

Text row 1

Text row 0

Finding the slot number

$50/CO

Text row 15

Text row 14

Text row 13

Text row 12

Text row 11

Text row 10

Text row 9

Textrow 8

$78/F8 $7FIFF
.. ><-~..: .. "" ... <.H

Taxt row 23 i~ holes ,
~;".., .. , .. ,)

Text row 22 1§E·.
Text row 21 ~l~oles ~.
Text row 20 } holes.

» "' ~.,'

Text row 19 ~:€.~1~I,~·
Text row 18 IE§I~~J
Text row 17 ~'ho!es"" i

(_-,""'"""x<>O<'

Text row 16 ~h'ol~: :~

The ROM routines on a peripheral card often need to know which slot the card is in. One
way to do this is to execute a JSR Gump to subroutine) instruction to a location with an
RTS (return from subroutine) instruction in it, then get the return address from the stack
and derive the slot number from that, using the formula given above in the section "Slot
ROM space."

The Apple IIGS Hardware Reference and the technical
reference manuals for the Apple lIe and the Apple IIc
describe in detail how a peripheral-card routine goes
about determining its slot number.

38

Chapter 3: I/O Features

Serial I/O ports
The Apple IIGS has two built-in serial ports that can substitute for slots 1 and 2. By using
the Control Panel desk accessory, the user can select either the built-in port or the card for
either slot. A built-in port can operate while there is a peripheral card plugged into the
corresponding slot, but the port and the card cannot both run at the same time.

The Apple IIeS Owner's Guide gives a complete
description of the use of the Control Panel.

The hardware for the serial ports consists of a two--<:hannel Serial Communications Chip
(Zilog 8530) and RS-422 driver ICs. The firmware for the ports emulates the functions of
the Super Serial Card and the Apple IIc serial-port firmware. The firmware provides input
and output buffering as well as background printing, as described below.

The ports are normally configured such that port 1 is a printer port and port 2 is a
communications port, but either port can be configured either way by using the Control
Panel desk accessory. (Alternatively, the user can connect either one of the ports to
AppleTalk: see the section "AppleTalk interface" later in this chapter.)

Apple II serial ports

Apple II: This section describes the way the serial ports work in other models of
the Apple II. If you are familiar with the operation of the Apple Super Serial Card
or the serial ports on the Apple IIc, you might as well skip ahead to the section
"New Serial-Port Features."

This section describes the basic functions of the serial I/O ports. Those functions are the
same on the Apple IIGS as on other Apple II's with built-in ports, even though their
hardware implementation is different. For complete descriptions of the serial ports, refer to
the manual Apple IIGs Finnware Reference.

Both serial ports are general-purpose I/O ports, compatible with RS-232 standard
devices. Serial port 1 is initalliy set up as an output port for a printer or plotter, and serial
port 2 as a communications port for a modem: Table 3-1 shows the settings. The user can
change the characteristics of either port by using the Control Panel desk accessory. An
application can change port characteristics by means of commands, as summarized in Table
3-3 and described fully in the Apple JIGS Finnware Rtjerence.

39

Technical Introduction to the Apple IlGS

Table 3-1. Initial settings for serial ports

Characteristic Port 1 Port 2

Line length unlimited unlimited

Delete line feed after carriage rerum? no no

Add line feed after carriage rerum? yes no

Echo output to display screen? no no

Buffering on? no no

Data transmission rate 9600 baud 1200 baud

Number of data bits 8 8

Number of stop bits 1 1

Type of parity checking none none

DCD-type handshaking enabled? yes yes

DSRJDTR handshaking enabled? yes yes

XON/XOFF handshaking enabled? no no

Command character'" Control-I Control- A

"Note: The Control Panel doesn't change the command character. You change the
control character by sending the current command character followed by a control
character, which becomes the new command character. For more information, see the
following section.

DeD, DSR, and DTR stand for data carrier detect,
data set ready. and data terminal ready. respectively,
which are names of signals on the serial ports. XON
and XOFF are two control characters. I/O driver
routines use those signals or those characters for
handshaking, that is, controlling the transfer of
data between the computer and the peripheral device.

Serial-port commands

There are two ways of controlling a serial port. One way, commonly used by Applesoft
programs or from the Monitor, is to activate a port or slot by means of the Input and Printer
commands, as shown in Table 3-2, and then send command characters in the output
stream, as shown in Table 3-3.

The second method of controlling a serial port is by the standardized fumware protocol.
Your program makes calls to command routines whose addresses your program has found
in standardized locations derived from the slot number. The firmware actually contains two
separate interfaces, one for Applesoft BASIC and one, called the Pascall.1 interface, for
other languages. Table 3-4 and 3- 5 summarize the two interfaces to the firmware. For
complete descriptions, refer to the Apple IIGS Firmware Reference.

40

Chapter 3: 110 Fearures

Important: The manuals for the Super Serial Card and for the Apple TIc also list
hardware registers and screen-hole locations for controlling the ports. If you want
your programs to run properly on the Apple IIGS and on future models of the
Apple II, do not control the ports by means of the hardware; use calls to the
fIrmware or use the toolbox. See the section "Serial-port Compatibility."

Table 3-2. Input and Printer commands. The letter s stands for the port number,
either 1 or 2.

Function Applesoft command Monitor command

s Control-K Start input on port s IN#s

Start output on port s PR#s s Control-P

Table 3-3. Summary of I/O commands

Command

nnnN

nnB

C
nD

F

I

K

L

M

nP

Q

R

S

T

X

Z

Description

Set line width to nnn

Set baud rate to one of fIfteen standard values selected by nn.
Lowest rate is 50, highest is 19200.

Send automatic carriage return whenever line width exceeded

Set data format-number of data bits and stop bits-to setting
specifIed by n. Data bits can be 5, 6, 7, or 8; stops bits, I or 2.

Disable keyboard to prevent disturbing input data stream

Echo output to display screen

Disable automatic line feed after carriage return

Generate automatic line feed after carriage return

Mask out (delete) incoming line-feed characters

Set parity as selected by n. Parity can be even, odd, mark, space,
or none.

Quit (turn off) terminal mode

Reset port

Send a break character

Enter terminal mode

Turn on XON/XOFF I/O protocol

Zap (ignore) further commands until Control- Reset

41

Technical Introduction to the Apple lIas

Table 3-4. Address locations for BASIC protocol. The letter s stands for the port
number, either I or 2.

Address Description

$CSOO

$CS05

$CS07

Initialization routine (also outputs a character)

Read a character

Write a character

Ta ble 3-5. Address locations for Pascal 1.1 protocol. The letter s stands for the port
number, either I or 2.

Address Description

$CsOD

$CsOE

$CsOF

$CslO

$Cs12

Offset to initialization routine (pInit)

Offset to read routine (PRead)

Offset to write routine (pWrite)

Offset to status routine (PStatus)

Offset to control routine for extended interface

Note: To obtain the address of the desired routine, read the offset byte from the
address given in the table and add it to the slot address, $CSOO. To use the extended
interface, set up a command list and then JSR to the address ofthe control routine, as
described in the Apple lIas Firmware Reference.

For complete descripitons of the interfaces to the
serial I/O finn ware, refer to the Apple /I GS Firmware
Reference.

Terminal emulation

The Apple IIOS firmware supports a terminal emulation mode that works like the one in the
Apple IIc. The terminal emulation has a minimum of features, and is intended for use only
when a full- featured communications package is not available. The terminal emulation
passes characters typed on the keyboard (except command strings) to the serial output, and
passes serial input to the display.

The user puts the Apple IIGS into terminal mode through the BASIC interface by typing

IN#scT

where s is the port number and c is the command character (usually Control-I for the
printer port or Control-A for the communications port). The letter T is the terminal
command, as shown in Table 3-3. To quit terminal mode, the user types the command
character followed by the letter Q, the Quit command.

When running terminal emulation at high baud rate, you can use the firmware's buffering
features (described below) to keep from losing characters during display scrolling.

42

Chapter 3: I/O Features

New serial-port features

The serial ports on the Apple IIGS have several new features in addition to the ones found
on the Super Serial Card and the Apple IIc. The new features include:

• I/O buffering

• background printing

• built- in AppleTalk interface

This section describes the new features briefly; for more information, refer to the manual
Apple IIGS Firmware Reference.

I/O buffering

The serial-port fIrmware supports input and output buffering. Each port has an input
buffer and an output buffer. The default buffer size is 2K, which the fIrmware requests
from the Memory Manager, but an application can request larger buffers (up to 64K) and
pass the location and size to the firmware.

There are four ways to turn on buffering:

• from the control panel

• from the keyboard after the Applesoft PR# command

• from an application by a command in the output stream

• from an application by a command to the serial fIrmware

Output buffering puts characters in a FIFO (first-in, frrsHmt) queue in the output buffer
space, then sending them on to the output device whenever it is ready. Input buffering puts
characters into a queue in the input buffer and responds to calls to the fmnware's Read
routine with characters from the queue.

Although the application is not involved in the interrupt process that the firmware uses to
support buffering, the application can keep track of buffer activity by making
extended-interface calls that return the number of characters in the input queue or the
amount of space left in the output queue. (Those calls are InQStatus and OutQStatus; refer
to the Apple IIGS Firmware Reference for descriptions.)

Background printing

The fmnware can send a block of characters out a serial port while an application is
running. This background printing is similar to output buffering except that the fmnware
accepts a large number of characters all at once instead of getting them one at a time. When
the fmnware transmits the last character in the output buffer, it calls a recharge routine,
supplied by the application, that refills the buffer. As with normal buffering, the
application can either use the default 2K buffer or request its own buffer of up to 64K
from the Memory Manager.

43

Technical Introduction to the Apple lIeS

AppleTalk interface

The user can connect AppleTalk to either one of the serial port connectors and activate it by
means of the Control Panel desk accessory. At any given time, only two of three UO
functions-AppleTaJk, serial port I, serial port 2-can be active. (The Control Panel
ensures that one serial port is made inactive when AppleTalk is selected.)

AppJeTaJk is Apple's Jocal-area network for
Apple II and Macintosh, using the LaserWriter and
ImageWriter II. Like the Macintosh, the AppJe lias
has the AppleTalk interface built in.

So that the Apple IIGS can support AppleTalk, the interrupt service routine is designed to
respond to the serial-port hardware fast enough to preclude data overruns. In addition,
a hardware timer generates a system interrupt four times a second to enable the AppleTalk
firmware to carry out network operations.

A data overruD occurs when input data comes faster
than the computer can accept it.

Serial-port compatibility

Even though the commands used to communicate with the serial-port fmnware are the
same as those in the fmnware on the Super Serial Card (and similar to the ones in the
Apple IIc), some existing programs using these ports will not be compatible with the serial
ports on the Apple IIGs. The reason is that many programs, especially communications
packages, bypass the firmware commands and go directly to the hardware. Programs that
control the hardware directly won't be compatible with the Apple IIGS, because it uses the
8530 Serial Communications Chip (SCC), not the 6551 Asynchronous Communications
Interface Adapter (ACIA) used in the Super Serial Card and the Apple IIc.

Programs that use the port to control a printer are more likely to use the fmnware
commands, making them compatible with the Apple IIGS. The same goes for most
applications written in Applesoft or Pascal. AppleWorks and MousePaint are examples of
programs that control the ports by calls to the fmnware and so are compatible with the
Apple IIGS.

Even programs that use the fmnware can get into trouble if they communicate with the
fum ware by modifying the contents of the screen holes. The serial-port firmware takes
the place of ROM in slots 1 and 2, so it uses the screen-hole locations for those slots.
Rather than making proper calls to the fmnware, some programs control the operation of
the firmware by changing the values in those locations. While that may work on a
particular model of Apple II, the firmware in another model may not react the same way.
For complete information about the serial ports, refer to the manual Apple IIGs Firmware
Reference.

(marginal gloss) The screen hoJes are locations in
the text display page that are used by the ROM on
cards in expansion slots, as described in the earlier
section "Slot RAM space."

44

---.

Chapter 3: 110 Features

Built-in disk port
The Apple lIGS has a built-in disk port like the one on the Apple lIc. The disk port uses
an IC called the IWM (Integrated Woz Machine) and can handle up to six drives, connected
in a daisy chain. The drives can include one DuoDisk (which counts as two drives), up to
two UniDisk drives, and four UniDisk 3.5 or Apple 3.5 (unified) drives.

Note: Disk II 5.2S-inch drives won't work with the built-in port because their
connectors won't fit. They work fine with a Disk II controller card installed in an
expansion slot.

Apple II: The earliest form of disk storage available for the Apple II consisted of
Disk II controller cards and Disk II drives using S.2S-inch floppy disks with 143K
storage capacity. Each controller card could handle one or two drives; for more
than two disk drives, you needed additional controller cards. The conventional
location for the first controller card was slot 6; the second card went in slot 5. For
initial loading (booting) from disk, the startup routine in the firmware started with
slot 7 and tried successively lower-numbered slots until it found one with a disk
controller card in it. Most software for the Apple II was designed to use slot 6,
drive 1, as its startup drive. On more recent Apple II's that have a built-in disk
interface, the slot and drive nomenclature is less meaningful, but it is still the
convention because so many programs designed that way are still in use.

(marginal gloss) Boot is shon for bootstrap
load , a term suggestive of the difficulty of initial
loading of loader programs into early computers that
didn ' t have built-in firmware in ROM.

The disk-port finnware handles drives addressed as internal slots 5 and 6. You can also
install a disk interface card in slot 6 and have two additional S.25-inch drives (although
you can't use all the drives at the same time). You can boot the Apple IIGS from drive 1 in
either slot. Using the Control Panel desk accessory, you can determine whether the
finnware will look for the boot device in slot 5, in slot 6, or scan downward from a
specified slot.

The disk-port firmware also controls /RAMS, a block-storage device emulated in RAM
and activated as slot 5, drive 2. When /RAMS is active, the finnware accesses the second
3.5- inch disk drive as slot 2, drive 1.

SmartPort and Protocol Converter

SmartPoTl is a set of assembly-language routines used to support block 110 devices.
The SmartPort firmware includes the Protocol Converter software used in the Apple IIc
3.S ROM revision. SmartPort supports two 5.25-inch drives, two Apple 3.5 drives, up to
127 UniDisk 3.5 drives, and the RAM disk volume /RAMS. (The disk-port hardware can
handle a maximum of six drives.)

(marginal gloss) A block 110 device reads or
writes information in organized groups called blocks,
typically 512 bytes. A disk drive is a block device.

45

Technical Introduction to the Apple lIes

Applications can make calls to the SmartPort to perform the following functions.

• obtaining status information about a device

• resetting a device

• formatting the medium in a device

• reading from a device

• writing to a device

• sending control information to a device

Calls to SmartPort use the same technique as the Pascal 1.1 protocol summarized in Table
3-5, except the address values are in the slot 6 locations. For complete information about
SmartPort, refer to the manual Apple lIes Firmware Reference.

Game I/O connectors
The game I/O connectors can be used for attaching one or two pairs of hand controllers or
game paddles, one or two joysticks, a graphics tablet, or a similar I/O device designed for
use with Apple II computers.

Note: Similar I/O devices designed for the Apple IIGS can be connected to the
DeskTop Bus, which is described in the next section.

Like the Apple lIe, the Apple IIGS has two game I/O connectors: a 9- pin miniature
D-type connector on the back panel, and a 16-pin DIP socket on the main circuit board,
inside the case. The 9-pin connector has four analog inputs (used for hand controllers or
in pairs for joysticks), three button inputs, power, and ground. The 16-pin socket has the
same signals as the 9-pin connector, plus a strobe and four single-bit outputs.

Apple DeskTop Bus
The Apple DeskTop Bus is a simple I/O interface with twO different but related functions.
Its primary function is to provide intelligent support for the keyboard and the DeskTop Bus
mouse. It also provides a convenient way to connect additional input devices, such as hand
controls, graphics tablets, numeric keypads, and other keyboards.

The DeskTop Bus is a serial interface (not a standard serial I/O port) that is controlled by its
own built-in microprocessor, the Apple DeskTop Bus (ADB) microcontroller. DeskTop
Bus devices use inexpensive four---conductor cables and four-pin miniature DIN
connectors. Additional devices connect in parallel with devices already installed; some
devices, such as the detached keyboard, include a jack for connecting other devices. The
different types of devices have different identifiers; if there are two devices of the same
type, the ADB microcontroller assigns them different identifiers.

A DIN connector is a type of connector with
multiple pins inside a round outer shield. The initials
DIN stand for Deutsche Industrie Normal, an
European standards organization.

46

Chapter 3: 110 Features

Detached Keyboard

The Apple llGS keyboard is the new Apple standard detached keyboard. The new
keyboard layout includes several enhancements, most notably a numeric keypad. It also
conforms to European standards in the shape and position of the Return and Shift keys.

The Apple DeskTop Bus microcontroller (AbB microcontroller) supports the detached
keyboard, providing basic scanning and encoding along with special features such as a
type-ahead buffer. The ADB microcontroller supports eight different keyboard layouts,
making it easier to localize the Apple llGS for other countries. The ADB microcontroller
also supports the Dvorak keyboard layout, which the user can select by means of the
Control Panel desk accessory.

(marginal gloss) The Dvorak typewriter keyboard,
also called the New American Standard Keyboard, has
its keys arranged such that it is more efficient to use
than the more common Qwerty (for the first line of
keys) keyboard arrangement

With the Apple IIGS Upgrade installed in an Apple IIe, the ADB microcontroller supports
the internal keyboard, providing the same features that are available with the detached
keyboard.

Mouse

The DeskTop Bus provides an improved interface for the Apple Mouse. Although the
actual mouse hardware is unlike that on either the Apple IIe mouse card or the Apple IIc,
the calling sequences are the same, as required for program compatibility.

The Apple Mouse contains a microcontroller that keeps track of the movement of the mouse
up to plus--<lr-minus 63 increments (±$3F) and reports mouse information to the DeskTop
Bus, which passes it on the the mouse routines in the fmnware. Like the AppleMouse card
for the Apple lie (and unlike the mouse interface on the Apple IIc), the ADB controller
reduces the burden that operation of the mouse places on the main processor, as described
in the next section.

DeskTop Bus firmware

The DeskTop Bus firmware provides communications and control for the detached
keyboard (along with the built- in keyboard when the Apple IlGS Upgrade is installed in an
Apple lIe) and the DeskTop Bus mouse. It also acts as a simple communications interface
for other input devices such as joysticks and graphics tablets.

For applications using the DeskTop Bus, there is a
DeskTop Bus tool set: See Chapter 5 for more
information.

47

Technical Introduction to the Apple lIeS

The firmware supports mouse operations in somewhat the same way as the AppleMouse
card for the Apple lIe. Like the AppleMouse card, the Apple DeskTop Bus supports
interrupt- mode operation of the mouse, waiting until VBL occurs before interrupting the
system. It also provides a true passive mode: that is, a mode in which the mouse interface
doesn' t intenupt the application, but waits for the application to poll it. Using passive
mode, applications can operate the mouse while running software routines that mustn't be
intenupted, such as critical timing loops.

VEL is short for vertical blanking; it is an interrupt
signal generated by the video timing circuit each time
it finishes a vertical scan. The vertical scan happens
60 times a second, so VBL is a convenient way to
control the frequency of other events. such as mouse
interrupts.

For complete information about the operation of
Apple DeskTop Bus, refer to the manual Apple IIGS
Firmware Reference. To find out how to connect a
device to the bus, refer to the Apple IIGS Hardware
Refereru:e .

48

Chapter 4

Firmware Features
The Apple IIOS has a total of 128K bytes of ROM for fmnware: permanently resident
programs. The fmnware includes the following features:

• driver programs for built-in I/O ports

• resident desk accessories

• Monitor

Monitor I/O routines

• resident Toolbox

• Applesoft BASIC interpreter

This chapter describes only the resident desk accessories, the Monitor, and the Monitor I/O
routines. The built-in I/O ports are described in the previous chapter. The Toolbox is
described in Chapter 5 and in the Apple IIas Toolbox Reference, Volume 1 and Volume 2.
(See Chapter 5, "The Apple JIos Toolbox.") Applesoft BASIC has its own manuals:
Applesoft Tutorial, Applesoft Reference Manual, and BASIC PRogramming with
ProD OS.

Resident desk accessories
Desk accessories are programs, usually small, that the user can invoke to perform some
immediate task when some larger program is running. When the desk accessory is
finished, the interrupted program can continue. Most desk accessories are loaded from
disk and reside in RAM, but there are two that are permanently resident in ROM: the
Control Panel and the Alternate Display Mode.

Control Panel

The Control Panel is a permanently resident desk accessory that the user can invoke while
another program is running. The Control Panel enables the user to specify the operating
parameters for the following functions:

• I/O ports: printer or modem, line length, baud rate, and so on

display: 40 or 80 columns; colors for text, background, and border

• pitch and volume of sound to use for bell

operating speed: I MHz or 2.5 MHz

slot allocation: internal ports or peripheral cards

49

Technical introduction 10 the Apple lIGS

• startup slot

• language (character set) for keyboard and display

• built- in clock: time and date

The Desk Manager, which controls the desk
accessories, is described in Chapter 5, "The
Apple IIGS Toolbox." The Apple IlGS Owner's
Guide describes the operation of the Control Panel by
the user. The Apple IlGS Firmware Reference
describes the operation of the Control Panel by an
application.

Alternate Display Mode

The Alternate Display Mode is a small fmnware routine that can be activated from the
Control Panel. It makes the Apple IIGS compatible with standard Apple II programs that
create animated displays by rapid alternation or flipping of the two Lo-Res graphics pages.

Standard Apple II programs running on the Apple IIGS normally can't display text Page 2
(also known as La-Res graphics Page 2) because the hardware does not shadow it. If
such programs use page flipping for Lo-Res animation, the display won't look right unless
they can display text Page 2. To run the programs on the Apple IIGS, the user must first
turn on Alternate Display Mode, which periodically transfers data from text Page 2 in
bank $00 to the same area of bank $EO, where it can be displayed.

The Monitor
The Monitor is a built- in program that provides machine- language access to the registers
and memory. The Monitor includes fmnware I/O routines to accept commands typed at the
keyboard and to display text on the screen. These I/O routines provide low-level input and
output functions that application programs can also use: see the next major section,
"Monitor I/O fmnware." Even though the Miill-assembler and Disassembler are
considered parts of the Monitor, this section describes them separately, after the other
features of the Monitor.

Using the Monitor

Apple II: This section describes features that are common to the Monitor
programs on all models of the Apple II. If you are already familiar with the
Monitor, you might as well skip ahead to the section "New Monitor Features."

The Monitor is a built-in utility that enables a programmer to exarrune code and data in
memory and to execute portions of the code. The Monitor program occupies memory in
ROM bank $FF, starting at location $FF69 (-151). That part of ROM is mapped into
banks $00 and $01 by the language-<:ard switches when Applesoft BASIC or other
standard Apple II programs are running. One way to invoke the Monitor is to have
Applesoft runillng and type

50

Chapter4: Firmware Feiuures

CALL-151

When the Monitor is running, the prompt character is an asterisk (*). When you are
finished using the Monitor, you return to Applesoft by pressing Control-Reset or
Control-C.

The Monitor does not support the desktop user interface. To give a command to the
Monitor, you type a line at the keyboard and press Return. Commands contain three kinds
of information: addresses, data values, and command characters. Addresses are in
hexadecimal; data values can be in hexadecimal or in the fonn of ASCII characters.

Monitor commands

Apple II: This section describes features that are common to the Monitor
programs on all models of the Apple II. If you are already familiar with the
Monitor, you might as well skip ahead to the section "New Monitor Features."

Like the Monitor programs in all other models of the Apple II, the Apple IIGS Monitor
allows programmers to operate on programs in memory at the lowest level. The Monitor
includes instructions to

• display the contents of a memory location

• display a range of memory locations

• store values staffing at a location

• display the contents of the registers

• change the contents of the registers

• move a block of memory

• compare (verify) two blocks of memory

• direct output to port or slot n

• accept input on slot or port n

• execute program code starting at a location

• disassemble code staffing at a location

New Monitor features

Among the new features of the Apple IIGS Monitor are

• new commands

• improved display

• extended memory addressing

The Apple IIGS Monitor also includes eilhanced versions of the Apple II Mini-assembler
and Disassembler, which are described later.

51

Technical Introduction 10 1he Apple IIGS

New Commands

The Apple lIas Monitor has many new commands. Among them are commands to

• save and restore registers and mode settings

• search memory for a pattern up to 256 bytes long

• fill part of memory with a one-byte value

• make a call to the Tool Locator

• store a new value into a specific register

• enter ASCTI characters from keyboard into memory

• change the setting of the real-time clock

• convert hexadecimal to decimal or vice-versa .

• perfo= 32-bit addition, subtraction, multiplication, and division

• switch between native and emulation modes

For descriptions of the Monitor comman<)s, refer 10
the chapter on the Monitor in the Apple IIGS
Firmware Reference.

Improved Display

Many of the Monitor commands display the contents of part of memory on the screen. The
fo=at of those displays has been improved, so they now include both hexadecimal and
ASCII values.

Extended Memory Addressing

The Apple lIas Monitor supports all the features of the new 65C816 microprocessor,
including 16-bit registers and 24--bit addresses. The command syntax now includes two
hexadecimal digits of bank address (delimited by a slash) so the Monitor can address any
bank.

Mini-Assembler and Disassembler

All models of the Apple TI have some version of the Disassembler, and all but the early
models of the Apple TIe have a Mini-assembler. The Apple lIas has both. They are
enhanced to support the 65C816 microprocessor's new instructions and long addresses,
and they support both native and emulation mode.

The Mini-assembler and Disassembler are special features of the Monitor. The
Mini-assembler provides a means of developing and debugging an program or routine in a
very simple fo= of assembly language.

When you invoke the Mini-assembler, the prompt character changes to an exclamation
point (!) and the Monitor accepts 65C816 instructions in the fo=

52

Chapter4: Firmware FeaJUres

address: opcode operands

The address field and the colon are optional; you omit them to enter consecutive
instructions. The Mini-assembler does not maintain a symbol table, but it does recognize
all the standard instruction mnemonics, and it calculates relative addresses. It recognizes a
preceding number sign (#) as signifying an immediate operand. You use the letters X and
Y, set off by commas, for indexing, and you type indirect addresses inside parentheses.

To stop the Mini-assembler, you type a null line by pressing the Return key.

Unlike the Mini- assembler, which takes over the user interface and accepts inputs from the
user, the Disassembler is just the Monitor's List command. It lists the contents of memory,
one screenful at a time, converting op codes into mnemonics and relative addresses into
absolute addresses.

Both the Mini-assembler and the Disassembler can handle all 91 of the 65CS16's
instructions and all 24 addressing modes (a total of 256 op codes). In addition, the
disassembler properly expands operating-system calls to ProDOS 8 and ProDOS 16,
showing command nurnbersand parameter- list pointers on separate lines.

ProD OS 8 and ProDOS 16 are the disk
operating systems that run on the Apple IIGS. See
Chapter 8 for descriptions of ProDOS 8 . and
ProDOS 16.

Monitor I/O firmware
Apple II: This section describes the Monitor I/O routines, which are functionally
the same on the Apple IIGS as on the Apple lIe and Apple lIe. If you are already
familiar with the Monitor I/O routines, you might as well skip ahead to the section
"Interrupt support."

The Monitor accepts inputs from tbe keyboard and displays information on the screen. To
do these tasks, it has its own I/O routines. Every Apple II contains some version of the
Monitor, so it also contains these built-in I/O routines. Because they are always available,
many application programs use them for keyboard input and text display output.

Standard JJO links

The Monitor I/O routines include standard input and output routines that are used by the
operating system, by device drivers, and by applications. The standard I/O routines pass
contrOl on to internal I/O routines by way of two locations in RAM called the I/O links.
The I/O links contain the addresses of whatever I/O routines are in control at the time.

In an Apple II running without an operating system, the I/O links normally contain the
addresses of the standard internal I/O routines. An operating system typically replaces the
link addresses with the addresses of its own I/O routines, and in turn calls the internal I/O
routines.

53

Technical Introduction to the Apple lIes

There are two sets of internal I/O routines: one set that exists in all Apple II's, even the
earliest, and another set that exists only on Apple II's that support 8O--column displays.
The routines in the earlier set are Keyln and COutl; the 8O--column routines are C3KeyIn
and C3COutl. (KeyIn is pronounced key in and COutl is pronounced C out one.
C3KeyIn and C3COuti are pronounced C three key in and C three C out 1.)

The I/O links are two-byte addresses at locations $0036 and $0038 in bank $00: see
Figure 4-1. The link at location $0036 is the output link; it is named CSW, for character
(output) switch. It holds the address of the subroutine that handles single-character output.
When you issue a PR#n command from Applesoft or an n Control-P from the Monitor, the
fmnware changes the address in this link to the frrst address in the ROM space allocated to
slot or port number n. Subsequent calls to the output link are thus transferred to the
fmnware associated with that slot or port. When you issue a PR#O or a 0 Control-P, the
fmnware replaces the slot ROM address at CSW with the address of the internal output
routine.

Figure 4-1. Standard I/O links

$0039 KSWH

$0038 KSWL
KSW (input)

$0037 CSWH

$0036 CSWL
CSW (output)

The link at location $0038 is the input link; it is named KSW, for keyboard (input) switch.
Like the output link, it normally holds the starting address of a standard routine-in this
case, the routine for single-character input. When you issue an IN#n command from
Applesoft or an n Control-K from the Monitor, the firmware changes the address in this
link to the first address in the ROM space allocated to slot or port number n. Subsequent
calls to the input link are thus transferred to the firmware associated with that slot or port.
When you issue an INoo or a 0 Control-K, the fmnware replaces the slot ROM address at
KSW with the address of the internal input routine.

Input routines

The Monitor fmnware includes two different subroutines for reading from the keyboard:
RdKey (pronounced read key) and GetLn (pronounced get line). The RdKey routine
provides input of a single character by calling the current character input routine, that is, the
routine whose address is stored in the input link at KSW. That routine is normally eitlier
Keyln or C3KeyIn, which accepts one character from the keyboard. The Keyln routine
displays a cursor at the current cursor position, waits until someone presses a key, then
puts the ASCII value of that key into the accumulator and passes control back to the calling
program.

The GetLn routine provides input for entire lines by making repeated calls to the input
routine until it gets a carriage return. GetLn starts by displaying a prompt: a character that
indicates that the program is waiting for input. Different programs can have different
prompt characters simply by storing the desired character at a specified location in RAM.
As the user types keys, the GetLn routine stores the ASCII values into successive locations

54

CluJpter 4: Firmware Features

in the input buffer in memory locations $0200--$02FF. The GetLn routine also supports
some simple screen editing and control features.

Output routine

The standard output routine is named COut (pronouncedC out, for character output). It
calls the current character output routine, that is, the routine whose address is stored in the
output link CSW. The character output routine is normally either COutl or C3COutl,
which sends one character to the display, advances the cursor position, and scrolls the
display if necessary. Both character output routines restrict their use of the display to an
active area called the text window, which is determined by four values stored in RAM: left
margin, width, top line, and bottom line.

For more infonnation about the standard input and
outpUl routines, refer to the manual Apple IIGS
FimcwGTe Reference.

Other routines

The Monitor firmware also contains other useful routines for dealing with the keyboard and
display. Like the standard I/O routines described above, they carry out low-level functions
appropriate for the operation of the Monitor. The firmware routines include functions such
as

• clearing all or specific pans of the screen

• clearing the screen and putting the cursor in the upper-left corner

• drawing colored points and lines in Lo-Res graphics

• getting the color of a specified location on the Lo-Res screen

• printing out the value in the accumulator, in hexadecimal

For more information about the. firmware I/O routines, refer to the manual Apple IIes
Firmware Reference.

Interrupt support
The fmnware includes interrupt support for the full range of interrupts possible on the
Apple IIGS. As in the Applellc and the enhanced Apple lIe, the firmware on the
Apple IIGS makes interrupt-driven programs possible. Interrupts work well with ProD OS
(any version) and Pascal (revision 1.2 or higher); DOS 3.3 doesn't support interrupts.

The goal of the interrupt handler is to support interrupts in any memory configuration. It
saves the machine's state at the time of the interrupt, and puts the machine into a standard
memory configuration before passing control to your program's interrupt handler.

55

Technical Introduction to the Apple llGS

An interrupt vector is the address of an interrupt
service routine, stored in a fixed location. When an
interrupt occurs, the system uses the interrupt vector
to transfer control to the service routine.

Important: The interrupt vectors are stored in system ROM (bank $FF,
locations $FFEE-$FFFF), and so is a short interrupt service routine (bank $FF,
locations $C071-$C07F). For interrupts to work with programs running in banks
$00 and $01, I/O shadowing and language-card mapping must be on. Table 4--1 is
a summary of the types of interrupts the firmware recognizes. For more
information about interrupts, please see the manual Apple llGS Firmware
Reference.

IRQ is short for interrupt request, which is a signal
input to rhe microprocessor requesting an interrupt.
Depending on the state of a flag in the processor's
status register, it can either react to an IRQ or ignore
it.

Table 4-1. List of Apple IIoS Interrupts

Type of interrupt

Program BRK instruction

Peripheral card IRQ

VBL
Video scan line

Mouse

AppleTalk Network

Timer for AppleTalk

Keyboard

Serial input on port 1

Serial inpu t on port 2

Ensoniq DOC

Clock chip

Apple DeskTop Bus

Cold-start reset

Wann-start reset

Cause of interrupt

A break instruction in a program

Request from a peripheral card

Vertical-blanking time occurred

Scan- line time occurred

Button, movement, or VBL

Address recognition or error

Occurs every 0.26667 seconds, to trigger
event processing by AppleTalk

Key was pressed

Transmitter empty, data received, or error

Transmitter empty, data received, or error

An oscillator completed a waveform table

Occurs every second

A Desktop-Bus device requires service

Power up, or Control-Apple-Reset
keys pressed

Peripheral-card reset, or Control- Reset
keys pressed

56

Chapter 5

The Apple IIGS Toolbox

One of the important differences between the Apple IIGS and earlier models of the
Apple II is that, like the Macintosh, the Apple IIGS has a built-in Toolbox with routines
that can be called by applications. The Toolbox serves two purposes: It makes developing
new applications easier, and it supports the desktop user interface.

What's the Toolbox?
The Apple IIGS Toolbox is a collection of useful routines that can be called by application
programs. The Toolbox routines are a permanent part of the system; they are available to
application programs without the need to link libraries to applications.

The Toolbox routines have many uses. There are routines that support the new hardware
features of the Apple IIGS, such as Super Hi-Res graphics and the digital oscillator chip
(DOC). Other routines support the desktop user interface, wrnch uses mouse operations in
menus and windows.

The Toolbox routines are arranged in logical groups called tool sets, managers, or simply
lools. Each individual routine that can be called by an application is a tool call. For
example, the routines that support the Super Hi-Res graprncs display are in a tool set
named QuickDraw II, and PaimPoly is a typical call in that tool set.

Not all of the tools are resident in ROM; some of them are loaded from disk and reside in
RAM. The calling mechanism is the same regardless of where in memory a tool resides. A
tool can even be in RAM in one version of the Toolbox and in ROM in another version; the
application will run the same in either case.

Developers are not restricted to the tool sets provided by Apple; they can create tool sets of
their own. The Tool Locator provides a way to switch back and forth between the
Apple IIGS tool sets and the application's own tools. For information about creating a tool
set, please read the manual Apple JIGS Toolbox Reference, Volume 1.

Apple IIGS Toolbox compared with Macintosh
Most of the routines in the Apple IIGS Toolbox are similar to routines in the Macintosh
Toolbox. In fact, the Apple IIGS designers started with the most important Macintosh
routines and tried to copy them as closely as possible, considering the differences between
the machines. Much of the work a typical event-driven application does to support the user
interface can be accomplished using the Apple IIGS Toolbox.

57

Technical Introduction to the Apple lIGS

Similarities

People familiar with the Macintosh Toolbox will find that many of the routines in the
Apple IIGS Toolbox are similar to their Macintosh counterparts. Table 5-1 is a list of those
Apple IIGS tool sets and the similar tool sets in the Macintosh.

Table 5-1. Macintosh counterparts for Apple llGS tool sets

Apple IIGS tool set Macintosh tool set

QuickDraw II QuickDraw

SANE Floating-Point Package

Desk Manager

Event Manager (high-level calls)

Event Manager (low-level calls)

Menu Manager

Window Manager

Control Manager

LineEdit

Dialog Manager

Scrap Manager

Print Manager

Desk Manager

Toolbox Event Manager

Operating System Event Manager

Menu Manager

Window Manager

Control Manager

TextEdit

Dialog Manager

Scrap Manager

Printing Manager

Several other tool sets in the Apple IIGS Toolbox have functions similar to tool sets in the
Macintosh, but actually work quite differently. For example, the Tool Locator in
Apple IIGS has the same function as the Trap Dispatcher in the Macintosh, but it's actually
quite different. Similarly, the Memory Manager in Apple IIGS has the same job as the one
in the Macintosh, but deals with a memory space quite unlike that of the Macintosh. Other
examples include the Apple IIGS System Loader, which is associated with ProDOS 16,
and the Text Tools, used with the text display, a Apple IIGS feature that has no equivalent
on the Macintosh.

ProDOS 16 is the disk operating system for the
Apple IIGS. See Chapter 8 for a description .

Differences

While many of the routines in the Apple IIGS Toolbox are similar to their counterparts in
the Macintosh Toolbox, they are certainly not identical. Table 5-2 lists the main reasons for
the differences.

58

~- '

Chapter 5: Apple llGS Toolbox

Table 5-2. Differences between the Apple IIGS and the Macintosh

Feature Apple IIGS

Display Color graphics and
text

Microprocessor 65C816, a descendant
of the 6502

Memory organization 64K memory banks

Resource manager Not present

TaskMaster Part of Window
Manager

Sound tools Sound Manager

The Resource Manager is a Macintosh tool for
editing data in programs without recompiling them.

Macintosh

Black-and-white graphics
and text

68000

Continuous memory

Part of Toolbox

Not present

Free-Form Sound Player

The Super Hi-Res graphics display on the Apple IIGS is supported by the QuickDraw II
tool set, which provides many functions similar to those in th.e QuickDraw tool set on the
Macintosh-similar, but not identical.

One major difference is that the Super Hi-Res display has color, which the Macintosh
display doesn't have. Another difference is that the Super Hi-Res display is coarser: its
highest resolution is 640 x 200, compared with 512 x 342 for the display on the
Macintosh. The aspect ratios of the pixels are also different: pixels in the Macintosh
display are square, but pixels in the Super Hi-Res display are tall (aspect ratio 5:6 in 320
mode, 5:12 in 640 mode). If your Macintosh application includes the display dimensions
as constants, you 'n have to make appropriate changes to use the application on the
Apple IIGS.

The aspect ratio of an image is the ratio of its
width to its height. The standard video display has a
4:3 aspect ratio.

The microprocessors used in the two machines are entirely different. The 65C816 used in
the Apple IIGS has different instructions and addressing modes from those of the 68000
used in the Macintosh. The 65C816 has 16-bit data registers, while the 68000 has 32- bit
registers.

Memory is organized differently on the two machines. Memory in the Macintosh is
continuous, but memory in the Apple IIGS, though contiguous, is not continuous: it is
divided into 64K banks, with parts of some banks dedicated to special tasks (such as
display buffers and I/O devices).

On the Apple IIGS, memory banks $00 and $01 are broken up by several features needed
for running programs written for earlier versions of the Apple II: the display pages, the
I/O space, and the language-card space. Also, there are differences in the way the 65C816
microprocessor handles different banks. The Memory Manager on the Apple IIGS has to
accomodate these restrictions.

59

Technical Introduction to the Apple IIGS

The Apple IIGS Toolbox doesn't have everything in it that the Macintosh Toolbox has.
One tool set not found on the Apple IIGS is the Resource Manager. You can still put your
program's constants and data structures in a separate segment, but they won't be quite as
easy for you to change. You'll need to be aware of this difference when setting up the
segment with the items you might want to change, such as icons and menu titles.

On the other hand, the Apple IIGS has some tools that the Macintosh doesn't For
example, the Window Manager on the Apple IIGS has a special call, TaskMaster, that
makes it easier to use the window environment (see the section 'The Window Manager,"
below).

Another area where the Apple IIGS differs from the Macintosh is that of sound tools.
While the Macintosh has the Free-Form Sound Player, the Apple IIGS has the Sound
Manager, a low-level tool for controlling the digital sound chip (the Ensoniq DOC).

Suggestions for Programmers

Applications on the Apple IIGS have strong resemblances to applications on the Macintosh.
They can have a similar desktop user interface, with menus and windows which the user
manipulates by using a mouse. Programs on both machines can be event-driven, so their
structures can be similar, with a main event loop and conditional branches to the parts of
the program that deal with each kind of event.

To keep from being dependent on memory configuration, applications on the Apple IIGS
use program segmentation and relocatable code. Unlike programs on the Macintosh,
Apple IIGS programs are not normally position independent, but they can be relocated by
the System Loader.

Programs wriuen in high level languages like C or Pascal on the iwo machines can be very
similar. Programs or segments written in assembly language can also take advantage of the
similarities between the Apple IIGS and the Macintosh, but must be rewritten because the
machines use different microprocessors. The microprocessors have different architectures
and addressing modes, so they require different assemblers.

Note: Apple's assembler for the Apple IIGS is not like the EdAsm assembler for
the Apple II. The Apple IIGS assembler not only has the 65C816's additional
instructions, it also uses different macros. For more information about the
assembler, see Chapter 9 . .

For more information about programming on the
Apple lIas compared with the Macintosh, refer to the
Programmer's Introduction 10 the Apple JIGS.

Making Calls to the Toolbox
Programs make calls to individual routines in the Apple IIGS Toolbox by me~s of ~all
names. The calling mechanism depends on the language of the program that IS makmg the
call. For programs in assembly language, a macro library defines the names, and programs
make calls in the following fashion:

(f)

Chapter 5: Apple JIGS Toolbox

1. Push space for the result (if any) onto the stack.

2. Push the input parameters onto the stack.

3. Invoke the call macro.

4. Pull the result (if any) from the stack.

For calls in high-level languages such as C or Pascal, there are libraries that defme the
names of the tool calls, along with appropriate coding conventions for passing parameters
on the stack, similar to the one defined above for assembly-language calls.

The tool sets
Here are brief descriptions of the tool sets on the Apple IIGS. For complete descriptions,
please refer to the manuals Apple JIGS Toolbox Reference, Volume 1 and Volume 2. Tool
sets with related functions are grouped together: for example, all the tools that support the
desktop interface are together in the section "The desktop tools."

The big five

These five tools--Tool Locator, Memory Manager, QuickDraw II, Event Manager, and
Miscellaneous tools--make up the foundation of the Toolbox. Your program may not call
on them directly, but other parts of the Toolbox and of the operating system are heavily
dependent on them.

The Tool Locator

The Tool Locator provides the mechanism for dispatching tool calls. Thanks to the Tool
Locator, tool sets can reside either in ROM or in RAM. That makes it possible for future
versions of the Toolbox to substitute enhanced tools in RAM for tools presently in ROM
with no changes to application programs.

Developers need to use the Tool Locator only if they are adding their own tool sets to the
Toolbox; the Apple JIGS Toolbox Reference, Volume 1 tells how to do that.

The Memory Manager

The Memory Manager controls use of memory by application programs. Keeping memory
use under control of the Memory Manager makes it possible to have co-resident
applications such as desk accessories. The System Loader calls the Memory Manager to
request memory space for loading a program. The program has the option of making its
own calls to the Memory Manager to request (allocate) additional memory, release
(deallocate) memory, or find out how much memory is currently available.

61

Technical Introduction to the Apple lIGS

QuickDraw II

The standard display for the desktop environment on the Apple lIGS is the new color
Super Hi-Res graphlcs. To support the graphlcs display. Apple lIGS firmware includes a
set of graphics routines named QuickDraw 1I.

The graphics routines in QuickDraw 1I are based on a subset of the Macintosh QuickDraw
routines. They include calls for changing the graphlcs environment and for drawing simple
objects called primitive objects. The primitive objects QuickDraw 1I handles are:

• lines

• rectan gles

• regions

• polygons

• ovals

• rounded rectangles

• arcs of circles

• pixel images

• text characters and strings

QuickDraw 1I is important not only to graphics applications. but to all applications that use
the desktop interface. because it includes the texHlrawing calls applications use for putting
text into display windows on the desktop.

In addition to the drawing routines. QuickDraw 1I also has routines for performing
calculations on different graphics objects; for example, to determine whether a specified
point is inside a particular rectangle.

Besides all that, QuickDraw 1I also includes calls for defming the global graphics
environment (for example, setting color tables) and for defming portable graphics
environments, called GrafPorts, so that an application can keep track of several different
graphics activities on different parts of the screen (or even in memory that isn't being
displayed).

The Event Manager

An event-driven application carries out its operations in response to mouse and keyboard
actions by the user. The application program is organized around a main loop that contains
a call to the Event Manager followed by a series of conditional statements. These
conditional statements determine the program's operations on the basis of the information
returned by the Event Manager. For example, pressing the mouse button generates an
event, whlch the Event Manager reports the next time around the loop. The Event Manager
also reports events within the application that may require a response. For example,
changing one window may cause another window to become visible and need to be
redrawn.

62

Chapter 5: Apple IIGS Toolbox

The Event Manager on the Apple nGS was designed to be as much like the event manager
on the Macintosh as possible. Although it is a single tool set, it has two kinds of calls,
high-level and the low-level, that resemble calls to the Macintosh Toolbox Event Manager
and Operating System Event Manager. The Apple IIGS Event Manager detects low-level
events, such as presses of the mouse button, and stores them in an event queue.
High-level calls retrieve events from the event queue and report events that aren't kept in
the queue, such as window events.

Miscellaneous tools

Tool calls in the miscellaneous tool set include routines to perform such tasks as

• accessing battery backed-up RAM

• reading and setting the built-in clock

• accessing peripheral cards

• changing the fmnware interrupt vectors

• installing and deleting tasks in the heartbeat interrupt queue

• enabling or disabling some interrupt sources

• accessing the mouse directly

The desktop tools

These tools-Menu Manager, Window Manager, Control Manager, LineEdit, Dialog
Manager, and Desk Manager-support the standard desktop interface.

The Menu Manager

An application program sets up menus and defines the menu bar by calling the Menu
Manager. When the user gives a command, either from the menu using the mouse or by
typing a command key, the application calls the Menu Manager to find out which command
it is.

The Window Manager

Information displayed by an application program appears in windows. The application
makes calls to the Window Manager to create windows, activate them, move them, change
their sizes, and close them. The Window Manager keeps track of overlapping windows
and posts events so the application can redraw windows that are newly uncovered. Also,
when the application detects the event that happened when the user pressed the mouse
button, the application calls the Window Manager to find out whether the cursor was in the
menu bar or a desk accessory or, if it was in the window, which part of the window it was
in.

63

Technical Introduction to the Apple JIGS

One of the calls in the Window Manager is TaskMaster, which is a kind of extended
get--event call. A TaskMaster call can handle many of the events that are likely to
happen in a window environment, such mouse'clicks in the control regions, without
passing control back to the application. By using TaskMaster calls, a programmer can
get an application up and running quickly and still take advantage of the features of the
desktop user interface.

The Control Manager

A control is an object on the screen that the user clicks with the mouse to cause an action or
change a setting. Controls include objects such as buttons, check boxes, and scroll bars.
The application creates and responds to controls by means of calls to the Control Manager.
When the application has found out from the Window Manager that the user pressed the
mouse bunon in a window that contains controls, it then caIls the Control Manager to fmd
carry out appropriate actions, such as

• displaying or hiding a control

• monitoring the user's operation of a control

• reading or changing the setting of a control

• changing the size, location, or appearance of a control

LineEdit

Application programs accept text typed by the user and perfonn standard editing functions
on the text by means of calls to LineEdit. Its functions are

• inserting and deleting text

• using the mouse to select text

• cutting and pasting text

LineEdit provides basic text-display fonnatting such as word wraparound. It handles only
a line at a time, unlike the text editor in the Macintosh Toolbox, which is a multi-line editor.

The Dialog Manager

The Dialog Manager is a tool for handling dialog boxes and alerts in a way that is consistent
with the Apple User Interface Guidelines.

When an application needs more information from the user about a command, it displays a
dialog box. To alert the user in case of an error or a potentially dangerous situation, the
application can dispJaya box with a message, cause a sound from the speaker, or both. To
create and display dialog boxes, to alert the user by a sound, and to find out the user's
responses to the boxes and the sounds, the application calls the Dialog Manager.

Chapter 5: Apple lIes Toolbox

The Desk Manager

The Desk Manager handles desk accessories, which are small co-resident application
programs such as calculators, calendars, and the like. The user can invoke a desk
accessory while an application is running, use the desk accessory for some task, then
continue the application as if nothing had happened.

There are two kinds of desk accessories on the Apple IIGS: classic desk accessories that
can run either in the Apple IIGS desktop environment or with non Apple IIGS applications
(like AppleWorks), and new desk accessories that run only in the Apple IIGS desktop
environment. The Desk Manager checks to see which environment it is in and makes sure
that a desk accessory can run in that environment before calling it.

Two classic desk accessories are built in: the Control Panel that is used to change the
machine configuration and set the time and date, and the Alternate Display Mode that is
needed for applications that use both Lo-Res graphics pages.

Mathematical tools

The Toolbox has two different ways of handling numeric operations: the SANE numerics,
which provide comprehensive floating-point arithmetic, and the integer math tools, which
are used by the other tool sets to perfoIID integer arithmetic.

Floating-point numerics (SANE)

The Standard Apple Numerics Environment (SANE) is a scrupulously-confOIIDing,
extended-precision implementation of IEEE standard floating-point arithmetic. The
Apple IIGS SANE tool set was derived from the 6502 Assembly Language SANE
software, and has the same functions as the Macintosh SANE packages. Features of the
numeric tool set include

• IEEE types single (32-bit), double (64-bit), and extended (80-bit)

• 64-bit type for exact fixed-point computations, such as in accounting

• basic floating-point operations (+ - * +"" rem)

• comparisons

• conversions between binary and decimal or floating-point and integer

• scanning and fOIIDatting for ASCII numeric strings

• logs, exponentials, and trigonometric functions

• compound interest and annuity functions for financial computations

• random number generator

• functions for managing the floating-point environment

• other functions required or recommended by the IEEE standard

Technical Introduction to the Apple IIGS

Integer Dlath tools

The integer math tool set includes several routines for working on data of types integer,
long integer,fixed, and/rac (that is, fractional part). The functions of this tool set include
multiplication, division, square root, some trigonometric functions, rounding, and
conversions between data types.

The Print Manager

There is one tool set for dealing with printing: the Print Manager. Refer to the Apple IIGS
Tools Reference, Volume 2, for information.

Specialized tools

The tool sets described in this section take care of specialized tasks.

The Sound Manager

The Sound Manager controls both the single-bit sound hardware and the digital oscilIator
chip (DOC). It includes two sets of routines: standard tool calls (called by way of the Tool
Locator) and low-level calls (called by way of a jump table) designed for faster access.

By making tool calls to the Sound Manager, an application can

• send sound data to and from the sound RAM

• control the volume of the sound

• start and stop the sound from a particular sound generator in the DOC

• get the status of any or all generators in the DOC

• set up the sound interrupt handler

• get the address of the jump table for accessing the low-level routines

Using the low-level sound routines, an application can

• read or write any register in the DOC

• read or write any location in the sound RAM

The DeskTop Bus tools

The Apple DeskTop Bus (ADB) Tool Set provides a communications and control interface
between your application and the ADB microcontroller that operates the DeskTop Bus.
Besides the bus commands, the ADB Tool Set includes calls used by diagnostic routines
and the Control Panel.

Chapter 5: Apple IIGS Toolbox

The ADB Tool Set iI)cludes specific commands for the keyboard and the mouse. For other
devices, applications need driver routines that set up the devices and handle their operation.
The setup routines identify the different devices oil the bus arid may even change bus
addresses and data handlers for them.

The ADB Tool Set includes calls for polling all the devices on the bus. For repeated use of
a single device, there is a polling call that always starts with the last device that was active.
The application can use whichever polling method is appropriate to control the priority of
devices on the bus.

The Scheduler

Much of the system code in the Apple IIos is not reentrant. The Scheduler makes it
possible to delay the execution of tasks that require non-reentrant system code whenever
that code is already in use. Non-reentrant resources indicate that they are in use by
modifying a flag called the Busy word. The Scheduler maintains a queue of processes
waiting to use non-reentrant resources. By keeping track of the Busy word, the Scheduler
determines when to activate the next process in the queue.

To be reentrant, a routine must be able 10 accept a
call while one or more previous calls to it are pending
without invalidating any previous calls.

The Text Tool Set

Like the other computers in the Apple II familty, the Apple IIoS has a video display mode
for text only. To use the text-display firmware as earlier Apple II programs do, programs
have to be running in emulation mode in bank $00. The Text Tool Set, along with the
enhanced video ou tput routines in the firmware, makes it possible for applications on the
Apple IIGS to use the text display without switching environments and moving to bank
$00.

Standard File Operations Tool Set

The Standard File Operations Tool Set provides the standard user interface for specifying a
file to be opened or saved by an application. When the user selects Open or Save in the
File menu, the application calls the appropriate standard flIe operation, which opens a
dialog box, displays the files in the current volume, and handles user selection of flies or
options, such as selecting a different drive or ejecting a disk.

The Scrap Manager

The Scrap Manager includes routines and data types that make it possible to cut and paste
text or graphics between two applications, between an application and a desk accessory, or
between two desk accessories. From the user's point of view, the data being cut or pasted
resides in the Clipboard.

67

Technical Introduction to the Apple lles

The Scrap Manager keeps the data being cut and pasted resides in a block of memory called
the desk scrap. The Scrap Manager can store it on disk if there isn't enough room for it in
memory. The type of data being transferred is different for different applications. The
Scrap Manager provides for different data types and provides some control over the amount
of information that is retained when the scrap is transferred.

--',

Chapter 6

Architecture of the Apple IIGS

The basic idea behind the Apple IIOs architecture is to make a more powerful
Apple II---one that can run programs designed for earlier models of the Apple II and also
support more sophisticated programs. The Apple lIos achieves this
contradictory-sounding goal by a combination of hardware and fIrmware-including a new
microprocessor, expanded memory, improved video displays, and a new sound
generator-that still has the ability to operate as an Apple II.

The microprocessor used in the Apple lIos is the 65CS16, a new 16--bit design based on
the 6502 microprocessor used in other Apple II's. The 65CS16 has two major features:

• It can operate either as a l6--bit processor or as an S-bit 6502.

• It can address to up to 16 megabytes of memory.

The ability of the 65CS16 to execute 6502 instructions makes it possible for the Apple IIOS
to run programs designed to run on 6502-based models of the Apple II. The 65CS16's
large address space makes it possible for the Apple IIos to have more memory than
6502-based Apple II's.

The design process
This section describes the design of the Apple lIos as a process of expansion, starting
with the Apple II. Understanding a little about the way the Apple IIos evolved will help
you understand the relationships between its new features and its old features.

Starting point: the Apple II

To understand how the Apple IIos incorporates the features of the Apple II, fIrst consider
the standard Apple II. Figure 6--1 is a simplifIed block diagram showing how an Apple II
might be designed around Apple's Mega II integrated circuit. The Mega II is a custom
large-scale integrated circuit that incorporates most of the timing and control circuits of the
standard Apple II. It addresses l28K of RAM organized as 64K main and auxiliary banks.
The Mega II also provides the standard Apple II video display modes, both text
(4O-column and SO-column) and graphics (Lo-Res, Hi-Res, and Double Hi-Res). The
slots indicated in Figure 6--1 are like the ones on the Apple lIe; the ports are like the ones
on the Apple lIe.

(f)

Technical Introduction to the Apple IIGS

Figure 6-1. Hypothetical Apple II using the Mega II

Slots Ports

128K
Mega II RAM

32K
ROM CPU

Adding a faster processor

Now suppose that we replace the CPU with a new, faster microprocessor and add faster
RAM and ROM and a new video display generator. Figure 6-2 is a simplified diagram of
the result. Shading identifies the parts that provide the new features; generally speaking,
the parts on the unshaded side provide the standard Apple II features. The CPU is now
the 65C8l6 on the shaded side; it operates in 6502 emulation mode when executing
standard Apple II programs.

Figure 6-2. New hardware added to the Apple II

Slots

128K
RAM

Ports

I!--I-~ Mega II

The new CPU runs faster than the normal Apple II processor- 2.8 MHz, compared with
the normal 1 MHz. To manage the disparate speeds, the new system has a custom
integrated circuit, the Fast Processor Interface (FPI), that supports the faster memory for
the new CPU and controls CPU access to the slower Mega II side. Besides controlling
the fast RAM and ROM, the FPI also controls expansion RAM, up to eight megabytes of
additional fast RAM.

7D

Chapter 6: Architecture o/the Apple IIGS

The shaded side of Figure 6-2 also includes the Video Graphics Controller (VGC). This
',j integrated circuit provides a new video display, the Super Hi-Res graphics display. The

new graphics display produces clear high-resolution color graphics on an RGB color
monitor.

Figure 6-2 is misleading in one important respect: it implies that programs designed for the
standard Apple II run in the part of RAM controlled by the Mega II, which is not the case;
such programs actually run in the 128K of fast RAM on the shaded side of the diagram.
The next section explains that aspect of memory on the Apple IIGs.

Memory on the Apple IIGS

The description of the Apple IIGS as merely an Apple II with a faster processor falls far
short of the whole story. As Figure 6-2 shows, adding the faster processor requires
adding faster memory. Besides that, one of the reasons for the new processor is not just
that it runs faster, but that it can address more memory, making possible a significant
increase in the amount of memory on the Apple IIGs. The following sections tell how the
larger, faster memory is implemented.

Faster memory

The Apple IIGS is capable of executing instructions almost three times as fast as a standard
Apple II. That speed can be used in two different ways: to obtain faster execution of
standard Apple II programs, and to enable new programs to take full advantage of the
65C816 processor.

It's important to realize that application programs----even programs designed for the
standard Apple ll-do not run in the 128K of RAM controlled by the Mega IT. That part
of RAM always runs at the standard 1 MHz speed, because it contains the I/O slots and
the display pages. The I/O slots must be able to run Disk IT controller cards and other
peripheral-card finnware with timing loops designed to run at the standard 1 MHz speed.
The display pages have to be synchronized with the video hanlware, which also runs
at 1 MHz. The I/O and display features are allocated to memory in high-numbered banks
to keep the low-numbered banks available for fast RAM for running application programs.

The Fast Processor Interface (FPI) handles addressing and memory refresh for all of the
RAM except the 128K controlled by the Mega IT. The FPI also handles ROM addressing.
Instruction execution in those areas of memory runs at the rate of 2.8 MHz. Whenever the
CPU needs to read or write in the Mega II RAM (banks $EO and $El), the FPI
synchronizes the CPU timing to match the Mega II's 1 MHz clock.

The user always has the option of using the I MHz speed for an application (CPU speed
is an option in the Control Panel). Note that the program is still executing in the fast part of
RAM, but the FPI is operating at the standard speed.

71

Technicallntroducrion to the Apple lleS

Memory shadowing

For Apple II programs to run in memory banks $00 and $01, those banks must have the
same features as the memory in a 128K Apple lIe or an Apple nco That means they must
include the language-card mapping in the area above $DOOO, the VO spaces starting
at $COOO, and the display buffers for the standard Apple II displays. Here is a puzzle:
To make the low-numbered memory banks available as fast memory, the Apple IIGS
designers put the hardware for the VO and the displays into memory banks $EO and $El.
Programs designed for the Apple II run in banks $00 and $01 (as main and auxiliary
memory), and don't address any other banks. How can such programs operate I/O and
displays?

Note: All 1/0 in an Apple II is memory mapped. Certain memory locations are
attached to 1/0 devices, and I/O operations are just memory read and write
instructions.

The designers of the Apple IIGS devised a technique so that programs running in the fast
part of memory (banks $00 to $7F) can operate the VO and display features implemented in
the slow part of memory (banks $EO and $E 1). The technique is called memory
shadowing, and here's how it works. When shadowing is selected for a specific area, the
Apple lIGS hardware executes any instruction that writes into that area of bank $00 or $01
by writing both there and into the same address in bank $EO or $E 1. Because the memory
in banks $EO and $E 1 is synchronized to the video hardware, the instruction must execute
at the slow speed.

Display shadowing works a little differently from I/O shadowing. For I/O shadowing,
both reading and writing are slowed down. For display shadowing, the slowdown affects
only instructions that write in the shadowed areas; the CPU still reads from the display
areas of banks $00 and $01 at the faster speed.

So that existing application programs will run on the Apple lIGS, the operating system
turns shadowing on whenever it loads an old-style application.

Memory maps

The memory maps in Figures 6-3 and 6-4 show the RAM and ROM areas indicated in
Figures 6-1 and 6-2. The 128K of fast RAM on the shaded side of Figure 6- 2
corresponds to memory banks $00 and $01 ; the (fast) RAM on the memory expansion card
begins in bank $02 and can extend as high as bank $7F.

The slow RAM controlled by the Mega II corresponds to memory banks $EO and $E 1.
Those banks contain the video display pages and the memory locations allocated to the I/O
expansion slots. In addition, the built-in firmware also uses RAM in banks $EO and $El.

To give application programs full access to the low-numbered banks, the Apple lIGS
designers allocated system memory in the high-numbered banks. The system ROM is in
banks $FE and $FF. System ROM includes Applesoft, the Monitor, built- in port
finnware, and the ROM portion of the Toolbox. Banks $FO through $FD are allocated to
ROM on a memory expansion card, which is used for additional system firmware and for
applications stored as ROM Disk files.

72

'-.

Chapter 6: Architecture of the Apple lies

Memory for standard Apple II programs

The feature of the Apple IIGS that makes it possible for it to run standard Apple II
programs is the implementation of the standard l28K Apple II memory map in the
65C8l6's expanded memory space. This is done by configuring two of the 64K memory
banks to look like the RAM in a 128K Apple lIe: banks $00 and $01 , as shown in Figure
6-3.

To make two memory banks on the Apple IIGS work like the main and auxiliary memory
in an Apple lIe, those banks must have memory shadowing in effect for I/O spaces and for
the standard Apple II text and graphics display pages. (The Super Hi-Res graphics
display is not a standard Apple II display and is not normally used with Apple II
programs.)

When the user boots up an Apple II program on the Apple IIGS, the firmware sets up
memory banks $00 and $01 as main and auxiliary memory, with language-card spaces,
display buffers, and the I/O space at hex $Cxxx. The firmware also sets the direct page
(zero page) and stack locations to $()()()() and $0100 in bank $00.

Programs written for 8-bit Apple II' s don't use RAM outside the main and auxiliary
banks. To make additional memory useful with such programs, ProDOS 8 uses the
additional memory as a mass-storage volume named/RAMS.

Figure 6-3. Memory map for standard Apple II programs

_ _ _ _________ a,,,N...-. -------- - ----
,00 UF ,ED 'E1 ,FD 'FD 'FE ,FF

,cooo ~~iiiii

$6000 I--+---Itl'

Buill-In RAM -- =.,

Memory for new programs

New application programs written to use the full capabilities of the Apple IIGS don't have
the restrictions of programs written for the standard Apple II. New programs can cx;:cupy
memory in banks $00 and $01, parts of banks $EO and $E 1, and all of the expansIOn .
RAM in banks $02 through $7F. The applications can call the Memory Manager to obtam
additional memory in those areas.

73

Technical [ntroducrion to the Apple II GS

Figure 6-4 shows the areas of memory available to applications written specifically for the
Apple IIGS. Notice that banks $00 and $01 still have shadowing in I/O space and text
Page 1. Those areas must be shadowed for proper operation of interrupts and peripheral
cards. Also notice that the expansion RAM (banks $02 through $7F, if present) is
available as contiguous memory space.

Figure 6-4. Memory map for new Apple IIGS programs

--------------------------~~N~----------------------------
100 '0' ,02 .. ,7F lEO IE' ,FO 'FD 'FE 'FF

-'"
A reminder: To ensure compatibility with desk accessories and other co-resident
routines, Apple IIGS applications that need additional memory must request it from
the Memory Manager. (The System Loader calls the Memory Manager to obtain
memory space needed for loading initial program segments.)

74 ·

Chapter 7

Program Environments

The program environment is the combination of aU of the aspects of the machine that affect
the operation of the program. Many of the things that make up the program environment
are fixed: for example, the fact that memory is addressed as bytes, or the fact that all I/O is
memory mapped. This chapter describes those aspects of the program environment that
can be changed from one application to another.

Environment options
Programs running on the Apple IIGS will usually be of two basic types: programs that can
also run on 8-bit Apple II's, and programs that can run only on the Apple IIGs. While
the environments for those two program types are the ones used most often, they are not
the only ones possible, and there is no single master switch for changing from one to the
other. The program environment has many aspects, and programs can change any of them
independently of the others.

Note: There are two operating systems for the Apple IIGS, corresponding to the
two types of programs: ProDOS 8 for 8-bit programs, and ProDOS 16 for 16-bit
programs. Chapter 8 includes brief descriptions of the operating systems.

The aspects of the environment that a program can change are

• the microprocessor mode, register sizes, and values in bank registers

• the locations and sizes of the stack and direct page

• the execution speed

• operation of the language card and I/O spaces

• the display memory spaces, including choice of displays and shadowing

The following sections describe those aspects of the program environment.

Microprocessor options

Several of the conditions that are different in the different environments are attributes of the
microprocessor. Those include the microprocessor mode, the register sizes, the bank
register values, and the locations and sizes of the stack and direct page.

75

Technical Introduction to the Apple lIeS

Microprocessor modes

The 65C8l6 microprocessor can operate in two different modes: native mode, with all of
its new features, and 6502 emulation nuJde, for running programs written for 8- bit
Apple lIs.

For more information about the operating modes of
the 65C816, refer to the manual Apple JIGS Hardware
Reference. You might also want to read a reference
book about the 65C816 itself.

The 65C8l6 has three flags named e, m, and x that programs use to control its operating
modes. You put the 65C8l6 into 6502 emulation mode by setting the e flag to 1. When
you do that, the 65C8l6 automatically makes the accumulator and index registers 8 bits
wide. It also makes the stack only 256 bytes long, like the stack in the 6502. In emulation
mode, the direct page and the stack are automatically at locations $0000 and $0100 in bank
$00.

Setting the e flag to 0 puts the 65C8l6 into native mode. In native mode, a program can
make the stack and direct page larger than 256 bytes and can put them anywhere in memory
bank $00.

Register sizes

In the 65C8l6 processor's native mode, the widths of the accumulator and index registers
are controlled by the m and x flags. In the Apple llGS, both the m and x flags are normally
set to zero, making the registers sixteen bits wide. Applications running in native mode can
change either of those flags to make the accumulator or the index registers only eight bits
wide, but there is normally no reason for an application to do so, even though some system
routines work that way.

When running applications written for it, the Apple llGS normally operates with l6-bit
accumulator and index registers. When running 8-bit Apple II programs, the system
switches the processor to emulation mode, which automatically forces the register widths to
eight bits. (In emulation mode, the m and x flags have no effect.)

Bank register values

Applications written specifically for the Apple IIGS can use any banks in memory by
setting the program bank register and data bank register appropriately. When running
8-bit Apple II programs, the system firmware sets both the program bank and the data
bank to bank $00.

Stack and direct page

For programs written for standard Apple II's, the stack and direct page must be in their
proper 6502 locations, and the stack must be 256 bytes long. For programs written
specifically for the Apple IIGS, the size of the stack and the locations of the stack and direct
page within bank $00 are at the discretion of the application.

76

Chapter 7: Program Environments

When running the 65C816 in native mode, you can locate the stack anywhere between
$0800 and $BFFF in bank $00. If you switch to emulation mode, the processor
automatically sets the upper half of the stack pointer to $01. When you then switch back to
native mode, the upper half of the stack pointer remains set to $0 I, and your original stack
pointer is lost.

When you switch to emulation mode, you have to save your native-rnode stack pointer
temporarily, then set the stack pointer to the emulation-rnode stack and push the
native-mode stack pointer onto the emulation-rnode stack. After doing that, you switch the
processor to emulation mode. To switch back from emulation mode to native mode, you
reverse the process: First switch to full native mode, then pull the native-mode pointer off
the emulation-mode stack and transfer the 16--bit value to the stack pointer.

Note: Never use the main and auxiliary switches in native mode; doing so
prevents the firmware tools from working properly. When setting up the change
from native to emulation mode, you have to use the emulation-mode stack in main
memory, that is, bank $00.

Important: You must always have interrupts disabled while you are manipulating
the stack pointer.

Execution speeds

The microprocessor in the Apple IIoS can operate at either of two clock speeds: the
standard Apple II speed, I MHz, and the faster speed of 2.8 MHz. For programs running
in RAM, a few clock cycles are used for refreshing RAM, reducing the fast speed to an
effective value of about 2.5 MHz. System flrIDware, running in ROM, runs at the full 2.8
MHz.

There are three different ways of changing the operating speed. First, the user can use the
Control Panel to set the speed. Second, if a slot has a Disk II controller card in it, the
firmware switches to the I MHz speed whenever that slot is active, so that the disk
controller will work correctly. Third, programs can change the clock speed by changing
the high bit of the Configuration register, a control register in location $C036.

Control registers are located in the I/O space
($Cxxx) in bank SED; they are accessible from bank
$00 if I/O shadowing is on. For more information
about the control registers, refer to the Apple llGS
Hardware Reference.

Language-card and I/O spaces

Shadowing of the I/O and language card spaces is controlled by the IOLC bit in the
Shadow register, a control register located at $C035 in bank $EO: See Table 7-1. The
IOLC bit is normally set to zero, enabling I/O in the $Cxxx space and mapping the 4K of
RAM that would ordinarily occupy that space into a second bank of RAM in the $Dxxx
space, as shown in Figure 7-1. That configuration of the high 16K of RAM is called the
language card, after the first Apple II product that provided RAM memory in those
locations.

71

Technical Introduction to the Apple IIGS

Figure 7-1. Memory map of language---<:ard RAM

RAM in $Cxxx space

$FFFF ,------,

$FOOO 1-------1

$EOOO 1---1
$DOOO

$COOO

Implications for interrupts

RAM mapped as language card

$FFFF r------,

$FOOO 1---1

$EOOO f--­
bank 2 $DOOO '--__

$COOO __ _

Pan of the interrupt routines are in ROM in the I/O space at $C07x. For that ROM code to
operate, I/O must remain enabled in the $Cxxx pan of bank $()() and the high 16K of RAM
must stay mapped as a language card; that is, the rOLC bit of the Shadow register must be
zero. If a program changes the rOLC bit so it can use RAM in the $Cxxx space, the
interrupt routines won't work. IOLC shadowing must be left on even by programs
running in native mode, which don't otherwise use the language---<:ard mapping.

Standard Apple II display memory

An application running on the Apple IIGS can use any of the display modes available on
128K Apple II's or the new Super Hi-Res display. Of course, a typical application will
use only one or two display modes, so it can disable the rest.

Applications written for 8-bit Apple II's run in banks $()() and $01, but the hardware for
video displays uses memory in banks $EO and $E 1. For those applications, the firmware
sets shadowing on for those display spaces, so that when the application writes into a
display page in bank $()() or $01, the hardware also writes to the same location in bank $EO
or $El.

The program-selection routine in the Apple IIGS automatically sets the display shadowing
appropriately for the operating system that it is loading: On for DOS 3.3, UCSD Pascal,
and ProDOS 8, and off for ProDOS 16. When the startup routine sets display shadowing
on, it sets shadowing for all standard display pages. An application can turn off
shadowing of individual display pages by setting individual bits in the Shadow register, as
shown in Table 7-1.

78

Chapter 7: Program Environments

Table 7-1. The Shadow register (location $C035)

Bit Function (1 = Inhibit)
7 (reserved - read undefined, must write zero)

6 IOLC (I/O and language card) operation

5 (reserved _. read undefined, must write zero)

4 Auxiliary Hi-Res Pages I and 2

3 Super Hi-Res graphics space

2 Hi-Res graphics Page 2

I Hi-Res graphics Page I

o Text Pages I and IX

Super Hi-Res display memory

The Super Hi-Res display is a new graphics display that has several advantages over the
standard Apple II displays. While its two modes have resolutions that are only slightly
higher than the resolutions of standard Hi-Res and Double Hi-Res, there is no interference
between adjacent colors, so Super Hi-Res displays looks much clearer than Hi-Res or
Double Hi-Res. It is also easier to program, because it inaps entire bytes onto the screen,
instead of just seven bits, and its memory map is linear and continuous. Even though
Super Hi-Res does cost a little more, occupying 32K of RAM, you'll probably want to use
it anyway, because it is supported by the desktop tools.

Shadowing for Super Hi-Res display

The Super Hi-Res display uses locations $4000 through $BFFF in bank $El and is
nOrtOally not shadowed. An application can turn shadowing on and off for the Super
Hi-Res display by means of the Shadow register. When shadowing is on for the Super
Hi-Res display, applications can write to that display space in bank $01 (auxiliary
memory).

A reminder: Applications that use the QuickDraw II routines in the Apple IIGS
Toolbox for their displays should have display shadowing off. The QuickDraw II
routines write directly to the Super Hi-Res display space in bank $El, so no
shadowing is needed.

Linear memory map

To make life easier for the graphics programmer, there is an option to make the addresses
in the Super Hi-Res display memory map onto the display in a simple linear fashion. Bit 6
of the New Video register controls the linear mapping option (l to enable, 0 to inhibit). Of
course, applications that use QuickDraw II don't have to set the video control bits;
QuickDraw II takes care of that itself.

79

Technical Introduction to the Apple llGS

Note.: The linear-mapping option is not compatible with standard Hi-Res and
Double Hi-Res graphics.

Apple II: Memory mapping in the standard display modes is of a byzantine
complexity. First, adjacent rows of dots or characters onthe screen are not stored
in adjacent areas of memory, making it necessary for display routines 10 calculate
the starting location for each row. Also, Hi-Res graphics has the added handicap
of 7-bit bytes; that is, only seven bits of each byte are displayed. This makes it
harder for display routines to calculate the address of a byte that corresponds to a
position on the screen. Double Hi-Res is further burdened with the necessity to
alternate between memory banks when addressing adjacent locations on the screen.
By using linear mapping, Super Hi-Res display routines avoid these problems.

Table 7-2. New Video register (location $C029)

Bit Function

7 Enables Super Hi-Res graphics display

6 Enables linear mapping for Super Hi-Res graphics

5 Inhibits color in standard Apple II displays

1-4 (reserved)

o Enables bank latch (used by system)

Mixing environments
Despite the profound differences between the different program environments on the
Apple llGS, many operating features are similar. It is therefore possible to enhance
existing Apple II programs so that they can take advantage of Apple IIGS features such as
desk accessories and program tools. .

Specifically, the Toolbox routines are accessible not only from application programs
written specifically for the Apple IIGS, but also from programs running in 6502 emulation
mode. It is therefore possible to modify existing 6502 programs, adding Toolbox calls so
the programs can use the new features and the desktop user interface. (The tool sets
themselves run in native mode; applications running in emulation mode must switch to
native mode to make tool calls, and switch back to emulation mode afterward.)

It is even possible to make a hybrid program that runs on either a 6502-based Apple II or
on a Apple I1GS, by having the program check to see that it is running on a Apple I1GS
before it makes any Toolbox calls.

A similar kind of compatibility is available with desk accessories, which are accessible
from standard Apple II programs running with ProDOS 8 or from Apple I1GS programs
running with ProD OS 16. There are two kinds of desk accessories: classic desk
accessories, which can run in any Apple IIGS environment, and new style desk
accessories, which can run only under ProD OS 16. Each desk accessory has a flag that
determines which versions of ProD OS it can run with. In the software hierarchy, the Desk
Manager is below ProDOS. When the user invokes a desk accessory, the Desk Manager
detects which version of ProDOS it is running under and checks to see that the requested
desk accessory can run with that version.

--

Chapter 7: Program Environments

Environment summary
The simplest distinction between program environments on the Apple IIGS is between the
one used for running programs written for 8-bit A pple II's and the one used for programs
written specifically for the Apple IIGS. Table 7-1 is a list of the conditions making up
these two program environments. While it is possible for applications to set up other
combinations, these two program environments are the only ones the fIrmware and tools
suppon.

Table 7-1. Apple IIGS program environments

8-bit Apple II Apple IIGS
Feature programs programs

CPU mode Emulation (e=l) Native (e=O)

Accumulator size 8 bits (e=l)* 16 bits (m=O)

Index register size 8 bits (e=I)* 16 bits (x=O)

Execution speed IMHz or 2.8 MHz 2.8 MHz

Direct-page address $0000 in bank $00 Any page in bank $00

Stack address $0 I 00 in bank $00 Any page from $0800 to
$BFOO in bank $00

Stack size 256 bytes Any size up to $B7FF

Language-cardspaces
in banks $00 and $0 I

Yes Yes

Shadowing of I/O spaces Yes Yes
in banks $00 and $0 I

Shadowing of text Yes Yes
Pages I and IX

Shadowing of Hi-Res Yes No
graphics pages

Default display Text Super Hi-Res

Mapping of Super Hi-Res Normal, for Apple II Linear, for super
memory addresses standard displays Hi-Res display

RAM available to Banks $00 & $01 Banks $00 & $01,
application (plus expansion RAM

& parts of banks $EO
expansion RAM, &
pans of banks $EO &

& $EI, if modifIed to $EI
run on the Apple IIGS)

Use of expansion RAM As RAM Disk (or via As RAM Disk or via
by application Memory Manager, Memory Manager

if modifIed to run
on the Apple IIGS)

Operating system ProD OS 8, ProDOS 16
DOS 3.3, or
UCSD Pascal

81

Technical Introduction to the Apple JIGS

*In emulation mode (e= I), the m and x flags are always effectively equal to 1.

82

Chapter 8

Programs and the Apple IIGS

Since its inception, the Apple IT has had built-in fmnware to support application
programs, and the Apple ITGS continues and extends that tradition. In the past, some
applications programmers have bypassed the firmware, taking direct control of the system
hardware. This chapter describes some of the ways this is done and some of the problems
that arise.

Levels of program operation
You can think of the different levels of program operation on an Apple IT as a hierarchy,
with a hardware layer at the bottom, fmnware and operating-system layers in the middle,
and the application at the top. Figure 8-1 illustrates this idea. (The hierarchy in Figure
8-1 is a hierarchy of command levels-generally speaking, higher-level components call
on lower-level ones.)

Figure 8-1. Levels of program operation

Application Application

Operating
System

Firmware

G I Memo~ I I Keyboard I B B Hardware

Program control of the hardware

From the beginning, the Apple IT has been an open machine. Not only has it been possible
to extend the hardware by means of peripheral cards in expansion slots, but programs have
been able to take control of the hardware independently of the built-in fmnware.

83

Technical Introduction to the Apple JIGS

Whenever the firmware seemed too slow, the application programmer has taken the option
of controlling the hardware himself. As later models of Apple II have incorporated more
firmware, the need for applications to do it all for th.emselves has diminished. The
Apple ITOs has built- in program support far beyond that available on earlier models of the
Apple IT. Even so, it is still possible for a program to bypass the fIrmware and control the
hardware directly.

As Figure 8-1 shows, all of the levels except the lowest one are software-even fmnware
is only software that is permanently resident. As far as the hardware is concerned, one
program is much like another, regardless of its origin.

~

Every part of the Apple 1I0S, including the 65C816 microprocessor, control registers in
the custom ICs, the display buffers, and the I/O devices, is accessible to the application
program. Many of the computer's functions are controlled by soft switches. which are
memory locations permanently assigned to some hardware function. The soft switches are
described in the Apple lIos Hardware Reference.

The phrase "programming on the bare metal" expresses the attitude of programmers who
control the hardware themselves. That method has the advantage that everything is done
the way the programmer wants it. The obvious disadvantage is that the programmer has to
do a lot more work, but a more important one is the increased likelihood that the resulting
program will be incompatible either with other programs or with future versions of the
computer.

In order to run older programs that were written with this approach. the Apple lIas
continues the Apple II tradition of hardware accessibility at the lowest level. That makes it
possible to program the Apple ITos "on the bare metal." It does not make it advisable.

Using the Apple II firmware

The next level up from the bare metal is the built-in fmnware. In the earliest Apple II, this
was little more than primitive I/O routines for handling input from the keyboard and
formatting text output to the display screen (in 40 columns only, of course). The latest
model Apple IIe and Apple lIc include more powerful fIrmware to handle the 8()...{:0lumn
display. the mouse, serial I/O. and disk drives.

Because there have been many changes from model to model. it has generally been easier to
maintain compatibility with application programs that make use of the firmware interface.
as compared with programs that control the hardware themselves. There is now a strong
argument in favor of using the fmnware. even when the programmer is dissatisfied with its
performance. just to minimize incompatibilities.

A similar argument applies to disk operations. In the past. some applications have set up
their own disk me formats and included their own versions of DOS. Apple's new ProDOS
for the Apple lIas is fast and powerful; the cost of going your own way is now quite high
compared with the advantages of staying compatible.

84

Chapter 8: Programs and the Apple IIGS

Using the Apple IIGS Toolbox
The concept of a program toolbox is new to the Apple II family: The Apple IIGS is the .
first Apple II to have one. If you are an experienced Apple II developer, even if you have
striven to maintain maximum compatibility by using only the fmnware interfaces that Apple
has provided, you may find the toolbox to be a new way of programming. From that point
of view, the Macintosh developer may have an easier time of it. While the toolbox is not
the same as the one on the Macintosh, it is similar in concept, and many of its functions are
the same.

Chapter 5, "The Apple IIO S Toolbox," is an
introduction to the tools. For more information
about writing programs in this new way, you should
read Apple IlGS Toolbox Reference, Volumes 1 and
2, and Programmer's Introduction to the Apple II as,
which describes the process of putting a program
together.

The advantages of using the Apple llGS Toolbox are many. Not only do the tools do a lot
of the work that the application would otherwise have to do, but the machine itself is set up
to use the tools.

Apple IIGS operating systems
There are three kinds of operating systems that can run on the Apple IIGS:

• earlier systems such as DOS 3.3, ProD OS 1.0, and UCSD Pascal, which run the
same way on the Apple IIGS as on other models of the Apple II

• the latest version of ProDOS, ProDOS 8, which runs on all current Apple lls and
supports many of the new features of the Apple llGS

• the new ProDOS for the Apple IIGS, ProDOS 16, which supports all of the new
features but runs only on the Apple llGS

The new ProDOS for the Apple IIGS takes advantage of the 16-bit instructions and large,
continuous memory space on the Apple IIGS, making it unable to run on 64K and 128K
machines. To make it easy to distinguish between the two kinds of ProDOS, the ProDOS
that runs on 8-bit Apple II's is called ProD OS 8 and the ProDOS for the Apple llGS is
called ProDOS 16.

ProDOS 16 is functionally similar to 8-bit versions of ProDOS, but it does not work the
same way, so programs that run under an 8-bit ProDOS will not run under ProDOS 16
without suitable modifications. The latest version of 8-bit ProDOS, ProDOS 8, supports
8-bit programs running on the Apple IIGS. The System Loader automatically loads the
appropriate version of ProDOS, depending on the type of startup file it finds on the boot
disk. Table 8-1 is a summary of the differences between ProDOS 8 and ProDOS 16.

&5

Technical Introduction to the Apple IIGS

Table 8-1. ProDOS 8 and ProDOS 16 compared

Feature ProDOS 8

Microprocessor mode

Minimum memory

Maximum memory

Memory management

RAM Disk

Memory pointer size

System call instruction

System file suffix

System file type

6502 emulation

64K

128K

Bit map in global page

Connected

2 bytes

JSR into bank $00

.SYS

$FF

ProDOS 16

65C816 native mode

256K

8.25 megabytes

Memory Manager

Disconnected

4 bytes

JSL into bank $El

.SYSI6

$B3

Just remember that ProDOS 8 is for 8-bit Apple II applications running on the
Apple IIOS, and ProDOS 16 is for Apple IIGS applications.

Note: Even though ProDOS 8 and ProDOS 16 are different, they both use the
same disk formats and file structures. Either one can read a file written by the
other, except that ProDOS 8 won't start up from the startup files (type $B3) used
for ProDOS 16, and ProDOS 16 won't start up from the system ftles (type $FF)
or binary files (type $06) used for ProD OS 8.

The System Loader

The Apple IIGS Toolbox includes the System Loader, a system program that makes full
use of the large memory and the standardized load modules on the Apple IIGs. The
System Loader, working in conjunction with ProDOS 16 and the Memory Manager, loads
and relocates program segments . . Programs can be compiled and linked as individual
segments, some of which can be loaded dynamically, as needed.

Apple IIGS ProDOS 16 Reference includes
information about the System Loader.

Load segments can be either static or dynamic. Static segments remain in memory all
during program execution. The System Loader loads all of a program's static segments
when it first loads the program.

The System Loader doesn 'tload dynamic segments until they are called for during program
execution. The program can request specific segments by calling the System Loader, or the
loader can use the segment jump table, which is a special segment set up by the linker to
deal with references across segment boundaries.

-.

Chapter 8: Programs and the Apple IIGS

Apple II compatibility
One of the most important features of the Apple IIGS is its ability to run standard Apple II
programs. The Apple IIGS incorporates all the features of the Apple lIe and most of the
features of the Apple IIc, including the ability to support either 5.25-inch or 3.5-inch disk
drives connected to its disk port.

Running existing programs

Users can boot standard Apple II program disks on the Apple IIGS and run most
programs without modification. Such programs will not use any of the new features of the
Apple IIGS except its ability to run 2.5 times as fast. The programs will be running in
6502 emulation mode and the memory space available to them will be configured just like
the 128K of RAM in an Apple IIc.

Usep.; can invoke the Control Panel desk accessory to change the 1/0 slot assignments to
use with their Apple II programs. They can also change the text display colors and the
operating speed. For example, they'l1 probably want to run their business programs at the
fast speed, but they may want to slow down to normal speed for games.

Enhancing existing programs

Even for programs running in emulation mode, all of the new features of the Apple IIGS
are available. The only trouble is that programs written for earlier Apple II's don't include
routines that make use of the new features. As a developer, you can modify your programs
and add such routines while maintaining compatibility with older models of Apple 11
Modified programs can check to see what kind of Apple II they are running on and take
advantage of the new features if they are running on a Apple IIGS.

Note: To find out what kind of Apple II they are running on, programs can read
the ID bytes at locations $FBB3, $FBCO, and $FBBF in ROM.
Assembly-language programs can execute a JSR (jump to subroutine) to location
$FE IF in ROM, then branch on the state of the carry bit: It will be one for any
8-bit Apple II and zero for the Apple IIGS. For more information, refer to the
Apple lIes Firmware Reference.

Of course, if you're going to modify an existing Apple II program, some of the new
features make more sense than othep.;. For example, changing the program to add routines
that use the new I6-bit instructions would require a lot of work-work that would
probably be better spent on writing a new version of the program. On the other hand,
modifying a program so it could use the built-in tools might be worthwhile. The decision
should be based on whether the resulting program could still fit in memory on an Apple lIe
or Apple IIc. If it couldn't, it would be better to make a new version of the program just
for the Apple IIGs.

Technical Introduction 10 Ihe Apple lles

Another way to make an application run on either an 8-bit Apple II or on a Apple IIGS is
to make a new version that runs only on the Apple I1GS and put both versions on a single
disk. The appropriate version would run, depending on what kind of machine the disk was
booted on. The cold-start routine on the Apple IIGS looks for a system file with the suffix
.SYSI6 and loads ProDOS 16 if it is present; an 8-bit Apple 11 boots with a .SYS file and
gets ProDOS 8. Refer to the Apple IIeS ProD OS 16 Reference for more information.

Chapter 9

Apple IIGS Development
Environment

The development environment is the software that you use for developing programs on the
Apple IIGS. The development environment includes two kinds of programs: first, the
language compilers and assemblers, and second, programs that all developers use,
regardless of which language they are using. Each compiler or. assembler has its own
manual. The programs that are used with any of the programming languages are described
in the Apple IIes Programmer's Workshop.

Several features of the Apple IIGS help you with program development. First of all, there
is a standard format for object files, regardless of their source. Then there are the linker
and the System Loader that, together with standard load files, make it possible to create
modular programs with relocatable segments and to combine segments written in different
source languages. The languages available on the Apple IIGS include assembly language
and C. To provide a consistent programming environment, there is the Apple IIGS
Programmer's Workshop (CPW). The workshop includes the operating shell for
controlling the language compilers, along with the program editor, the debugger, the linker,
and utility programs.

Program modularity
The basis of the Apple IIGS development environment is the standard file formats. The
standard formats make it possible to use many different programming languages on the
Apple IIGS. Along with the System Loader, they also make possible program
segmentation, with relocatable segments that can be loaded dynamically during program
execution.

Creating a program is a multi· step process. First, the program is written in the form of one
or more source files. Compilers and assemblers process the source files and produce
object files. The linker then takes the program object files, along with any appropriate
library object files, and produces one or more load files. It is the load files that get loaded
into memory when the program is executed.

Object files and load files

Assemblers and compilers produce object files. The linker combines object segments from
one or more object files and produces a load file. Separate segments in object files can be
combined into a single segment by the linker. That makes it possible to write the program
as separate parts and recompile only the affected part whenever you make a change.

89

Technical Introduction to the Apple lIes

In addition to the program object files, there can be library files containing general-pw-pose
segments used by several programs. The linker can search the library and extract the
segments needed by the program.

Each load ftle consists of one or more segments, which can be static or dynamic. Static
segments must remain in memory while the program is running, but dynamic segments can
be loaded and unloaded individually as they are needed.

Program segments can also be capable of being loaded anywhere in memory, that is, they
can be relocatable. The actual relocation is carried out at run time by the System Loader.
Each load segment contains both the program code and a relocation dictionary, which the
System Loader uses to recalculate addresses when it loads relocatable segments. The load
file format was designed to malce dynamic loading as fast as possible.

Programming languages
The Apple IIoS development environment does not restrict developers to a single
programming language. You can use any programming language for which there is a
compiler that produces object files in the Apple IIos object module format. The languages
available from Apple include assembly language and C.

Assembler

The CPW Assembler executes under the control of the CPW Shell. The assembler
suppons the Apple IIos standard object file format and relocatable segments.

A macro assembler can combine multiple
assembly-language instructions into single pseudo­
instructions- macros-that make it easier to write
assembly-language programs.

Conditional assembly is the ability to define
macros or other pieces of code such that they
assemble differently under different ",ndilians.

The CPW Assembler is a full-featured macro assembler. It suppons the instruction sets
and addressing modes of the 65816 microprocessor. The assembler includes

• an extensive set of assembler directives

• macros and conditional assembly

• suppon for segments, which can be either code or data

• partial assembly, so that changes do not require reassembly of the entire program

• suppon for library files that the linker searches in case of unresolved references

Note: The CPW Assembler is not a version of Apple's EdAsm'" Assembler for
the Apple II.

Chapter 9: Apple llGS Development Environment

C compiler

The high-level language in the Apple IIGS Programmer's Workshop is C. Programs
written in C can easily include sections written in assembly language and in Pascal.

CPW C is similar to Macintosh Workshop C. The Apple IIGS Interface Library provides
an interface to the Apple IIGS Toolbox that is functionally similar to the Macintosh
Interface Libraries.

There are a few differences from Macintosh C, such as

• The size of int variables is 16 bits.

• The format of the pascal declaration is different.

• Function results are returned in a global variable, rather than the stack.

• Register variables are not available.

The Apple JIGS Workshop C Reference includes defmitions of the C language and of the
standard C library and the Apple IIGS Interface Library. It describes the differences
between Apple IIGS C and a standard C: the Berkeley 4.2 BSD V AX implementation of
the Portable C Compiler.

Other compilers

There can be a Apple IIGS compiler for almost any programming language; all the compiler
has to do is produce object files compatible with the Apple IIGS object file format.
Languages for which compilers could be written include Pascal, BASIC, Fortran, Logo,
Cobol and Lisp.

Apple IIGS Programmer's Workshop
The Apple IIGS Programmer's Workshop (CPW) is a set of programs that Apple provides
to make it easier to develop applications for the Apple IIGs. The programs in the
programmer's workshop are

• shell

• editor

• linker

• debugger

• utilities

These programs are all described in the manual Apple JIGS Programmer's Workshop.

9I

Technical Introduction to the Apple IIGS

Shell

The Shell provides the user interface that enables you to execute other CPW programs and
to perfonn various housekeeping functions such as copying files. You type in commands
in the old-fashioned way. ,

The shell also acts as an extension to ProDOS 16, providing additional support functions
for programs such as compilers, assemblers, and linkers running under the shell. Those
functions include

• parameter-passing between programs and the shell

• reading and setting the language type of a source ftle

• getting ftle names by using wildcards

• passing control to other system programs

• moving, copying, and deleting files and subdirectories

• renaming ftles

• changing prefixes

• listing ftles and directories

• changing the ProDOS file type of a file

The shell supports programmable command or Exec fIles that can be used to execute any
number of shell commands. The Exec files can include parameter passing and conditional
execution statements. The shell also supports redirection of input and output and pipelining
of CPW programs.

Editor

The CPW Editor is a text editor for use with the CPW Assembler and compilers. To use
the editor, you invoke it from the shell. If you select a pre-existing file for editing, the
editor is automatically set to the language of that file. Other wise, the editor is set to the last
language used or the last language selected with a shell command. You can also use the
editor to create Exec files.

Linker

The CPW Linker reads object files created by the CPW Assembler or by the CPW C
compiler and generates load files . For relocatable code, the linker resolves external
references and creates relocation dictionaries. Because the assembler and compiler create
object files that confonn to the same format, the linker can link together object modules
created by any combination of CPW languages.

Nonnally, you call the linker by a command to the shell that lets you specify a limited
number of linker options. You specify parameters for segmentation and printing in the
source code itself.

92

Chapter 9: Apple /lCs Development Environment

For advanced programmers who need more flexibility than the link command provides, the
linker has a command language called LinkEd. You can use LinkEd commands to perform
such functions as

• extracting segments from object mes

• opening and closing output flies

• creating static or dynamic segments

• searching libraries

• controlling printing by the linker

Debugger

The CPW Debugger enables you to trace program execution one instruction at a time or run
full speed and stop at a breakpoint. Each time the program stops, the debugger displays a
disassembly of the code, the contents of a specified area of RAM, and the contents of the
microprocessor's registers, stack, and direct page.

The debugger can switch between its own display and the display of the program under
test.

Utilities

The programmer's workshop includes several programs that perform functions that cannot
be handled by the built-in shell commands. These programs are called utilities, and they
include

• CRUNCH: compresses object modules after partial assemblies or compilations

• INIT: initializes a disk

• MACGEN: generates a maCTO file

• MAKELIB: generates a library ftle

• DUMPOBJ: lists all routines in an object module or load module

Some of the utility programs require no input from the user other than the name; those
programs are treated like any other shell command, and are referred to as external
commands.

93

Technical Introduction to the Apple IIGS

Appendix A

Roadmap to the
Apple IIGS Technical Manuals

The Apple IIGS has many advanced features, making it more complex than earlier models
of the Apple II. To describe it fully, Apple has produced a suite of technical manuals.
Depending on the way you intend to use the Apple IIGS, you may need to refer to a select
few of the manuals, or you may need to refer to most of them.

The technical manuals are listed in Table A-I . Figure A-I is a diagram showing the
relationships among the different manuals.

Table A-I. The Apple IIGS Technical Manuals

Title

Technical Introduction to the Apple IIGS

Apple IIGS Hardware Reference

Apple IIGS Firmware Reference

Programmer' s Introduction to the Apple IIGS

Apple IIGS Toolbox Reference: Volume I

Apple IIGS Toolbox Reference: Volume 2

Subject

What the Apple IIGS is

Machine internals--hardware

Machine internals-fmnware

Concepts and a sample program

How the tools work and some
Toolbox sepcifications

More Toolbox specifications

Apple IIGS Programmer's Workshop Reference The development environment

Apple IIGS Workshop Assembler Reference* Using the CPW assembler

Apple IIGS Workshop C Reference* Using C on the Apple IIGS

ProDOS 8 Reference

Apple IIGS ProD OS 16 Reference

Human Interface Guidelines

Apple Numerics Manual

*There is a Pocket Reference for each of these.

9.5

ProD OS for Apple II programs

ProDOS and Loader for Apple IIGS

Guidelines for the desktop interface

Numerics for all Apple computers

Technical Introduction to the Apple IIGS

Figure A-I. Roadmap to the technical manuals

To start finding
out about
the Apple IIGS ---

To learn how the
Apple 1/ GS works

To start learning
to program
the Apple IIGS ---

To use the toolbox

To operate on files

To use the
development
environment ----

To use C

To use assembly
language ------il:ifi

--- --'

Appendix A: Roadmap to the Apple IIes Technical Manuals

Introductory manuals
These books are introductory manuals for developers, computer enthusiasts, and other
Apple IIGS owners who need technical information. As introductory manuals, their
purpose is to help the technical reader understand the features of the Apple IIGS,
particularly the features that are different from other Apple computers. Having read the
introductory manuals, the reader will refer to specific reference manuals for details about a
particular aspect of the Apple IIGs.

The technical introduction

The Technical Introduction to the Apple IIes is the first book in the suite of technical
manuals about the Apple IIGs . It describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the Toolbox, and the development
environment.

Where the Apple IIeS Owner's Guide is an introduction from the point of view of the
user, the Technical Introduction describes the Apple IIGS from the point of view of the
program. In other words, it describes the things the programmer has to consider while
designing a program, such as the operating features the program uses and the environment
in which the program runs.

The programmer's introduction

When you start writing programs that use the Apple IIGS user interface (with windows,
menus, and the mouse), the Programmer's Introduction to the Apple lIes provides the
concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple IIGS. It introduces the
routines in the Apple IIGS Toolbox and the program environment they run under. It
includes a sample event-driven program that demonstrates how a program uses the
Toolbox and the operating system.

An event-driven program waits in a loop until it detects an event such as a click of the mouse butlOn.

Machine reference manuals
There are two reference manuals for the machine itself: the Apple lIes Hardware
Reference and the Apple IIes Firmware Reference. These books contain detailed
specifications for people who want to know exactly what's inside the machine.

97

Technical Introduction to the Apple JIGS

The hardware reference manual

The Apple JIGS Hardware Reference is required reading for hardware developers, and it
will also be of interest to anyone else who wants to know how the machine works.
Information for developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes descriptions
ofthe internal hardware, which provide a better understanding of the machine's features.

The firmware reference manual

The Apple JIGS Firmware Reference describes the programs and subroutines that are
stored in the machine's read-only memory (ROM), with two significant exceptions:
Applesoft BASIC and the Toolbox, which have their own manuals. The Firmware
Reference includes information about interrupt routines and low-level I/O subroutines for
the serial ports, the disk port, and for the DeskTop Bus, which controls the keyboard and
thc mouse. The Firmware Reference also describes the Monitor, a low-level programming
and debugging aid for assembly-language programs.

The Toolbox manuals
Like the Macintosh, the Apple lIos has a built-in Toolbox. The Apple JIGS Toolbox
Reference, Volume I, introduces concepts and terminology and tells how to use some of
the tools. It also tells how to write and install your own tool set. The Apple JIGS Toolbox
Reference, Volume 2, contains information about the rest of the tools.

Of course, you don't have to use the Toolbox at all. If you only want to write simple
programs that don't use the mouse, or windows, or menus, or other pans of the desktop
user interface, then you can get along without the Toolbox. However, if you are
developing an application that uses the desktop interface, or if you want to use the Super
Hi-Res graphics display, you'll find the Toolbox to be indispensable.

In applications that use the desktop user interface, commands appear as options in pull-down menus,
and material being worked on appears in rectangular areas of the screen called windows. The user selects
commandl or other material by using the mouse to move a pointer around on the screen.

The Programmer's Workshop manual
The development environment on the Apple lIOS is the Apple lIos Programmer's
Workshop (CPW). CPW is a set of programs that enable developers to create and debug
application programs on the Apple lIOS. The Apple JIGS Programmer's Workshop
Reference includes information about the pans of the workshop that all developers will use,
regardless which programming language they use: the shell, the editor, the linker, the
debugger, and the utilities. The manual also tells how to write other programs, such as
custom utilities and compilers, to run under the CPW Shell.

The CPW reference manual describes the way you use the workshop to create an
application and includes a sample program to show how this is done.

Appendix A: Roadmap to the Apple IIGS Technical Manuals

Programming-language manuals
Apple is currently provicling a 65C816 assembler and a C compiler. Other compilers can
be used with the workshop, provided that they follow the standards defined in the
Apple IIGS Programmer's Workshop Reference.

There is a separate reference manual for each programming language on the Apple IIGs.
Each manual includes the specifications of the language and of the Apple IIGS libraries for
the language, and describes how to write a program in that language. The manuals for the
languages Apple provides are the Apple llGS Workshop Assembler Reference and the
Apple llGS Workshop C Reference.

Operating-system manuals
There are two operating systems that run on the Apple IlGs: ProDOS 16 and ProDOS 8.
Each operating system is described in its own manual: ProDOS 8 Reference and
Apple IIGS ProD OS 16 Reference. ProDOS 16 uses the full power of the Apple IIGS and
is not compatible with earlier Apple lIs. The ProDOS 16 manual includes information
about the System Loader, which works closely with ProD OS 16. If you are writing
programs for the Apple IlGS, whether as an application programmer or a system
programmer, you are almost certain to need the ProDOS 16 Reference.

ProDOS 8, previously just called ProDOS, is compatible with the models of Apple II that
use 8-bit cPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8 only
if you are developing programs to run on 8-bit Apple II's as well as on the Apple IlGs.

All-Apple manuals
In addition to the Apple IlGS manuals mentioned above, there are two manuals that apply
to all Apple computers: Hwnan Interface Guidelines and Apple Nlunerics Manual. If you
develop programs for any Apple computer, you should know about those manuals.

The Hwnan Interface Guidlines manual describes Apple's standards for the desktop
interface of programs that run on Apple computers. If you are writing an application for
the Apple IlGS, you should be familiar with the contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment
(SANE), a full implementation of the IEEE standard floating-point arithmetic. The
functions of the Apple IIGS SANE tool set match those of the Macintosh SANE package
and of the 6502 Assembly Language SANE software. If your application requires accurate
arithmetic, you'll probably want to use the SANE routines in the Apple IlGs. The
Apple IIGS Tools Reference tells how to use the SANE routines in your programs. The
Apple Numerics Manual is the comprehensive reference for the SANE numerics routines.
A description of the version of the SANE routines for the 65816 is available through the
Apple Programmer's and Developer's Association, ~dn:" ' - '~red by the A.P.P.L.E.
cooperative in Renton, Washington.

Note: The address of the Apple Programmer's and Developer' s Association is 290
SW 43rd So-eet, Renton, WA 98055, and the telephone number is (206) 251-6548.

99

Technical Introduction to the Apple IIGS

100

Appendix B

Summary of Program Environments

The simplest distinction between program environments on the Apple IIGS is between the
one used for running programs written for 8-bit Apple II's and the one used for programs
written specifically for the Apple IIGs. Table B-1 is a list of the conditions making up
these two program environments. (This table is a duplicate of Table 7-1. For more
information about the program environment, refer to Chapter 7.)

101

Technical Introduction CO 1he Apple IIGS

Table B-1. Apple ITGS program environments -
8-bit Apple II Apple IIGS

Feature programs programs

CPU mode Emulation (e=1) Native (e=O)

Accumulator size 8 bits (e=I)* 16 bits (m={)

Index register size 8 bits (e=I)* 16 bits (x=O)

Execution speed 1 MHz or 2.5 MHz 2.5 MHz

Direct-page address $0000 in bank $00 Any page in bank $00

Stack address $0100 in bank $00 Any page from $0800 to
$BFOO in bank $00

Stack size 256 bytes Any size up to $B7FF

Language--{;ani spaces Yes Yes
in banks $00 and $01

Shadowing of JlO spaces Yes Yes
in banks $00 and $01

Shadowing of text Yes Yes
Pages 1 and IX

Shadowing of Hi-Res Yes No
graphics pages

Default display Text Super Hi-Res

Mapping of Super Hi-Res Normal, for Apple IT Linear, for super
memory addresses standard displays Hi-Res display

RAM available to Banks $00 & $01 Banks $00 & $0 I,
application (plus expansion RAM expansion RAM, &

& parts of banks $EO parts of banks $EO &
& $El, if modified to $EI
run on the Apple IIGS)

Use of expansion RAM As RAM Disk (or via As RAM Disk or via
by application Memory Manager, Memory Manager

if modified to run
on the Apple IIGS)

Operating system ProDOS 8, ProDOS 16
DOS 3.3, or
UCSD Pascal

*In emulation mode (e=l), the m and x flags are always effectively equal to 1.

- ,

102

•

Glossary

This glossary defines technical terms used in this book. Boldfaced terms within a
definition are defmed elsewhere in the glossary.

accumulator: The register in a computer's central processor or microprocessor where
most computations are performed.

ACIA: Acronym for Asynchronous Communications Interface Adapter, a type of
communications IC used in some Apple computers. See SCC.

acronym: A word formed from the initialleners of a name or phrase, such as ROM
(from read-only memory).

ADC: See analog-ta-digital converter.

address: A number that specifies the location of a single byte of memory. Addresses
can be given as decimal integers or as hexadecimal integers. A 64K system has addresses
ranging from 0 to 65535 (in decimal) or from $0000 to $FFFF (in hexadecimal). The letter
X in an address stands for all possible values for that digit. For example, $Dxxx means all
the addresses from $DOOO through $DFFF.

American Simplified Keyboard: See Dvorak keyboard.

American Standard Code for Information Interchange: See ASCII.

analog: (adj) Varying smoothly and continuously over a range, rather than changing in
discrete jumps. For example, a conventional 12--hour clock face is an analog device that
shows the time of day by the continuously changing position of the clock's hands.
Compare digital.

analog RGB: A type of color video monitor that accepts separate analog signals for the
red, green, and blue color primaries. The intensity of each primary can vary continuously,
making possible many shades and tints of color.

analog signal: A signal that varies continuously over time, rather than being sent and
received in discrete intervals. Compare digital signal.

analog-ta-digital converter (ADC): A device that converts quantities from analog to
digital form. For example, computer hand controls convert the position of the control dial
(an analog quantity) into a discrete number (a digital quantity) that changes stepwise even
when the dial is turned smoothly.

Apple key: A modifier key on the Apple IIGS keyboru Ci, marked with both an Apple
icon and a spinner, the icon used on the equivalent key on some Macintosh keyboards. See
Open Apple.

103

Technical Introduction to the Apple lIes

Applesoft BASIC: The Apple II dialect of the BASIC programming language. An
interpreter fOt creating and executing Applesoft BASIC programs is built into the finnware
of computers in the Apple II family.

AppleTalk: Apple's local-area network for Apple II and Macintosh and the LaserWriter
and ImageWriter IT. Like the Macintosh, the Apple ITGS has the AppleTalk interface built
in.

AppleTalk connector: A piece of equipment, consisting of a connection box, a short
cable, and an 8-pin miniature DIN connector, that enables a Apple IIGS to be part of an
AppleTaJk network.

Apple II: A family of computers, including the original Apple II, the Apple II Plus, the
Apple lIe, the Apple IIc, and the Apple IIGS.

Apple IIc: A transportable personal computer in the Apple IT family, with a disk drive
and 8O--colurnn display capability built in.

Apple lle: A personal computer in the Apple II family with seven expansion slots and an
auxiliary memory slot that allow the user to enhance the computer's capabilities with
peripheral and auxiliary cards.

Apple lle SO-Column Text Card: A peripheral card that plugs into the Apple lie's
auxiliary memory slot and enables the computer to display text as either 40 or 80 characters
per line.

Apple lIe Extended SO-Column Text Card: A peripheral card that plugs into the
Apple lIe's auxiliary memory slot and enables the computer to display text as either 40 or
80 characters per line while extending the computer's memory capacity by 64K.

Apple II Pascal: A software system for the Apple II family that lets you create and
execute programs written in the Pascal programming language. Apple II Pascal was
adapted by Apple Computer from the University of California, San Diego, Pascal
Operating System (UCSD Pascal).

Apple II Plus: A personal computer in the Apple IT family with expansion slots that
allow the user to enhance the computer's capabilities with peripheral and auxiliary cards.

application program: A program that enables a person to carry on some work, such as
word processing, data base management, graphics, or telecommunication. Compare
system program.

ASCll: Acronym for American Standard Code for Infonnation Interchange, pronounced
ASK-ee. A code in which the numbers from 0 to 127 stand for text characters. ASCII
code is used for representing text inside a computer and for transmitting text between
computers or between a computer and a peripheral device.

aspect ratio: The ratio of an image's width to its height. For example, a standard video
display has an aspect ratio of 4:3.

104

assembler: A language translator that converts a program written in assembly
language into an equivalent program in machine language. The opposite of a

'-- disassembler.

Glossary

assembly language: A low-level programming language in which individual
machine-language instructions are written in a symbolic form that's easier to understand
than machine language itself. Each assembly- language instruction produces one
machine-language instruction. See also machine language.

asynchronous: Not synchronized by a mutual timing signal or clock. Compare
synchronous.

Asynchronous Communications Interface Adapter: See ACIA.

auxiliary slot: The special expansion slot inside the Apple lIe used for the Apple lIe
8O-Column Text Card or Extended 8O-Column Text Card, and also for the RGB
monitor card. The slot is labeled AUX. CONNECTOR on the circuit board.

back panel: The rear surface of the computer, which includes the power switch, the
power connector, and connectors for peripheral devices.

baud: A unit of data transmission speed: the number of discrete signal state changes per
second. Often, but not always, equivalent to bits per second. Compare hit rate.

binary file: A file whose data is to be interpreted in binary form. Machine-language
programs and pictures are stored in binary files.

bit: A contraction of binary digit. The smallest unit of information that a computer can
hold. The value of a bit (1 or 0) represents a simple two-way choice, such as yes or no,
on or off, positive or negative, something or nothing.

bit image: A collection of bits in memory that have a rectilinear graphical representation.
The display on the screen is a visible bit image.

bitmap: A set of bits that represents the positions and states of a corresponding set of
items; for example, dots in an image. See bit image.

bit rate: The speed at which bits are transmitted, usually expressed as bits persecond, or
bps. Compare baud.

block I/O device: A type of device that reads or writes information in organized groups
called blocks, which are typically 512 bytes long. A disk drive is a block device.

boot: Another way to say start up. A computer boots by loading a program into
memory from an external storage medium such as a disk. Boot is short for bootstrap load,
a term suggestive of the difficulty of initial loading of loader programs into early computers
that didn ' t have built-in frrmware in ROM.

bootstrap: See boot.

/05

Technical Introduction to the Apple lIes

buffer: A holding area in the computer's memory where information can be stored by
one program or device and then read at a different rate by another; for example, a print
buffer.

bug: An error in a program that causes it not to work as intended. The expression
reportedly comes from the early days of computing when an itinerant moth shorted a
connection and caused a breakdown in a room-size computer.

bus: A group of wires or circui ts that transmit related information from one part of a
computer system to another. In a network, a line of cable with connectors linking devices
together. A bus network has a beginning and an end. (It's not in a closed circle or T
shape.)

buttons: The pushbutton- like images in dialog boxes where you click to designate,
confirm, or cancel an action. See also mouse button.

byte: A unit of measure of computer data or memory, consisting of a fixed number of
bits. On Apple n systems, one byte consists of eight bits, and a byte can have any value
between 0 and 255. The value can represent an instruction, letter, number, punctuation
mark, or other character. See also kilobyte, megabyte. .

call: (v) To request the execution of a subroutine, function, or procedure. (n) A request
from the keyboard or from a procedure to execute a named procedure. See procedure.

carriage return: An ASCII character (decimal 13) that ordinarily causes a printer or
display device to place the next character on the left margin.

carry flag: A status bit in the microprocessor, used as an additional high-order bit with
the accumulator bits in addition, subtraction, rotation, and shift operations.

cat bode-ray tube: A display device.

central processing unit (CPU): The part of the computer that performs the actual
computations in machine language. See microprocessor.

character: Any symbol that has a widely understood meaning and thus can convey
information. Some characters-such as letters, numbers, and punctuation--can be
displayed on the monitor screen and printed on a printer.

chip: See integrated circuit.

circuit board: A board containing embedded circuits and an attached collection of
integrated circuits (chips).

clock chip: A special chip in which parameter RAM and the current setting for the date
and time are stored. This chip is powered by a battery when the system is off, thus
preserving the information.

close: To turn a window back into the icon that represents it.

106

Glossary

CMOS: Abbreviation for complementary metal oxide silicon, one of several methods of
making integrated circuits out of silicon. CMOS devices are characterized by their low
power consumption. CMOS techniques are derived from MOS techniques.

code: (1) A number or symbol used to represent some piece of information. (2) The
statements or instructions that make up a program.

cold start: The process of starting up the Apple II when the power is first turned on (or
as if the power had just been tUrned on) by loading the operating system into main
memory, and then loading and running a program. Compare boot, warm start.

column: A vertical arrangement of graphics points or character positions on the display.

command: An instruction that causes the computer to perform some action. A command
can be typed from a keyboard, selected from a menu with a hand--operated device (such as
a mouse), or embedded in a program.

compiler: A language translator that converts a program written in a high- level
programming language (source code) into an equivalent program in some lower-level
language such as machine language (object code) for later execution.

component: A part; in particular, a part of a computer system.

composite video: A video signal that includes both display information and the
synchronization (and other) signals needed to display it. See NTSC, RGB monitor.

computer: An electronic device that performs predefined (programmed) computations at
high speed and with great accuracy. A machine that is used to store, transfer, and
transform information.

computer language: See programming language.

conditional assembly: A feature of an assembler that allows the programmer to define
macros or other pieces of code such that the assembler assembles them differently under
different conditions.

conditional branch: A type of branch instruction whose execution depends on the truth
of a condition or the value of an expression.

configuration: (1) The total combination and arrangement of hardware
components---CPU, video display device, keyboard, and peripheral devices---that make up
a computer system. (2) The software settings that allow various hardware components of a
computer system to communicate with each other.

Control key: A specific modifier key on Apple ll- family keyboards that produces
control characters when used in combination with other keys.

Control Panel: A desk accessory that lets you cha.ngf' <;f'-t"ln system parameters,
such as speaker volume, display colors, and configuration of slots and pons.

107

Technical Introduction to the Apple IIGS

control registers: Special registers that programs can read and write, similar to soft
switches. The control registers are specific locations in the I/O space ($Cxxx) in bank
$EO; they are accessible from bank $00 if I/O shadowing is on.

Control-Reset: A combination keystroke on Apple II-family computers that usually
causes an Applesoft BASIC program or command to stop immediately.

controller card: A peripheral card that connects a device such as a printer or disk drive
to a computer's main logic board and controls the operation of the device.

CPU: See central processing unit.

cursor: A symbol displayed on the screen marking where the user's next action will take
effect or where the next character typed from the keyboard will appear.

DAC: See digital-to-analog converter.

data: information transferred to or from or stored in a computer or other mechanical
communications or storage device.

data bits: The bits in a communication transfer that contain information. Compare start
bit, stop bit.

data format: The form in which data is stored, manipulated, or transferred. For
example, when data is transmitted and received serially, it typically has a data format of one
start bit, five to eight data bits, an optional parity bit, and one or two stop bits.

Data Carrier Detect (DCD): A signal from a DCE (such as a modem) to a DTE (such
as an Apple lIc) indicating that a communication connection has been established. See
Data Communication Equipment, Data Terminal Equipment.

Data Communication Equipment (DCE): As defined by the RS-232-C standard,
any device that transmits or receives information. Usually this device is a modem.

Data Set Ready (DSR): A signal from a DCE to a DTE indicating that the DCE has
established a connection. See Data Communication Equipment, Data Terminal
Equipment.

Data Terminal Equipment (DTE): As defined by the RS-232-C standard, any device
that generates or absorbs information, thus acting as an endpoint of a communication
connection. A computer might serve as a DTE.

Data Terminal Ready (DTR): A signal from a DTE to a DCE indicating a readiness to
transmit or receive data. See Data Communication Equipment, Data Terminal
Equipment.

DCD: See Data Carrier Detect.

DCE: See Data Communication Equipment.

debug: A colloquial term that means to locate and correct an error or the cause of a
problem or malfunction in a computer program. See also bug.

108

-.

Glossary

default: A preset response to a question or prompt. The default is automatically used by
the computer if the user doesn't supply a different response. Default values prevent a

~- program from stalling or crashing if no value is supplied by the user.

delete: To remove something, such as a character or word from a file, or a file from a
disk.

Delete key: A key on the upper- right corner of the Apple IIe, Apple lIe, and
Apple IIGS keyboards that erases the character immediately preceding (to the left of) the
cursor. Similar to the Macintosh Backspace key.

delta guide: A description of something new in tenns of its differences from something
the reader already knows about. The name comes from the way mathematicians use the
Greek letter delta (6) to represent a difference.

desk accessories: "Mini-applications" that are available from the computer's menu
regardless of which application you're using-for example. the Control Panel, Calculator,
Note Pad, Alarm Clock. Scrapbook, and so on.

desktop: The visual interface between the computer and the user-the menu bar and the
gray area on the screen, You can have a number of documents on the desktop at the same
time.

desktop environment: A set of program features that make user interactions with an
application resemble operations on a desktop. Commands appear as options in pull-<iown
menus, and material being worked on appears in areas of the screen called windows.
The user selects commands or other material by using the mouse to move a pointer around
on the screen.

desktop user interface: See desktop environment.

device driver: A program that manages the transfer of information between the
computer and a peripheral device.

digit: (1) One of the characters 0 through 9, used to express numbers in decimal fOnTI.
(2) One of the characters used to express numbers in some other form, such as 0 and 1 in
binary or 0 through 9 and A through F in hexadecimal.

digital: (adj) Represented in a discrete (noncontinuous) form, such as numerical digits or
integers. For example, contemporary digital clocks show the time as a digital display (such
as 2:57) instead of using the positions of a pair of hands on a clock face. Compare
analog.

digital oscillator chip: an integrated circuit that contains thirty-two digital oscillators,
each of which can generate a sound from stored digital waveform data.

digital signal: A signal that is sent and received in discrete intervals. A signal that does
not vary continuously over time. Compare analog signal.

digital-te-analog converter: A device that converts quantities from digital to analog
form.

1(1)

Technical Introduction to the Apple IIGS

DIN: Abbreviation for Deutsche Industrie Normal, a European standards organization.

DIN connector: A type of connector with multiple pins inside a round outer shield.

direct page: A page (256 bytes) of memory in the Apple IIGS that works like the zero
page in a 6502 system but can reside anywhere in bank $00, rather than always starting at
location $0000. Co-resident programs or routines can have their own direct pages at
different locations.

directory: A file that contains a list of the names and locations of other files stored on a
disk. These other files may themselves be directories (called subdirectories). A directory
is sometimes called a catalog.

disassembler: A language translator that converts a machine-language program into an
equivalent program in assembly language, which is easier for programmers to ·understand.
The opposite of an assembler.

disk-based: See disk-resident.

disk controller card: A peripheral card that provides the connection between one or
two disk drives and the computer. (This connection,' or interface, is built into the Apple
IIc, the Apple IIGS, and all Macintosh-faruily computers.)

disk operating system: An operating system whose principal function is to manage
files and communications with one or more disk drives. DOS and ProDOS are two disk
operating systems for the Apple II.

disk-resident: A program that does not remain in memory. The computer rerrieves all
or part of the program from the disk, as needed. Sometimes called disk-based. Compare
memory-resident.

Disk II drive: An older type of disk drive made and sold by Apple Computer for use
with the Apple II, II Plus, and lie. It uses 5.25-inch floppy disks.

display: (1) A general term to describe what you see on the screen of your display device
when you're using a computer. (2) Short for a display device.

display device: A device that displays information, such as a television set or video
monitor.

dithering: A technique for alternating the values of adjacent pixels to create the effect of
intermediate values. Dithering can give the effect of shades of gray on a black-and-white
display, or more colors on a color display.

DOC: See digital oscillator chip.

DOS: See Disk Operating System.

DOS 3.3: An operating system for the Apple II family of computers. DOS stands for
Disk Operating System; 3.3 is the version number.

DSR: See Data Set Ready.

110

Glossary

DTE: See Data Terminal Equipment.

'-'.' DTR: See Data Terminal Ready.

Dvorak keyboard: An alternate keyboard layout, also known as the American
Simplified Keyboard, which increases typing speed because the keys most often used are
in the positions easiest to reach. Compare QWERTY keyboard.

e flag: One of three flag bits in the 65C816 processor that programs use to control the
processor's operating modes. The setting ofthe e flag determines whether the processor is
in native mode or emulation mode. See m flag, x flag.

edit: To change or modify. For example, to insen, remove, replace, or move text in a
document.

editor: A program that helps you create and edit information of a particular form; for
example, a text editor or a graphics editor.

effective address: In machine-language programming, the address of the memory
location on which a particular instruction operates, which may be arrived at by indexed
addressing or some other addressing method

8-bit Apple II: Another way of saying standard Apple II, that is, any Apple II with an
8-bit microprocessor (6502 or 65C02).

8O-column text card: A peripheral card that allows the Apple II, Apple II Plus, and
Apple lIe to display text in 80 columns (in addition to the standard 40 columns).

emulate: To operate in a way identical to a different system. For example, the 65C816
microprocessor in the Apple IIos can carry out all the instructions in a program originally
written for an Apple II that uses a 6502 microprocessor, thus emulating the 6502.

emulation mode: A manner of operating in which one system imitates another. In the
Apple IIOS, the mode the 65C816 is in when the Apple IIos is running programs written
for Apple II's that use the 6502.

Escape character: An ASCII character that, with many programs and devices, allows
you to perform special functions when used in combination keypresses.

Escape key: A key on Apple II-family computers that generates the Escape character.
The Escape key is labeled Esc. In many applications, pressing Esc allows you to return to
a previous menu or to stop a procedure.

even parity: In data transmission, the use of an extra bit set to 0 or 1 as necessary to
make the total number of 1 bits an even number; used as a means of error checking.
Compare MARK parity, odd parity.

event-driven: A kind of program that responds to user ;nruts in real time by repeatedly
testing for events posted by interrupt routines. An event---driven program does nothing
until it detects an event such as a click of the mouse button.

111

Technical Introduction to the Apple lIes

expansion slot: A socket into which you can install a peripheral card. Sometimes called
a peripheral slot. See also auxiliary slot.

Extended SO-Column Text Card: See Apple lIe Extended SO-Column Text
Card.

file type: In a directory listing, the code that characterizes the contents of a file and
indicates how the file may be used.

firmware: Programs stored permanently in read-only memory (ROM). Such programs
(for example, the Applesoft Interpreter and the Monitor program) are built into the
computer at the factory. They can be executed at any time but cannot be modified or erased
from main memory.

font: In typography, a complete set of type in one size and style of character. In
computer usage, a collection of letters, numbers, punctuation marks, and other
typographical symbols with a consistent appearance.

format: (n) The form in which information is organized or presented. (v) To divide a
disk into tracks and sectors where information can be stored. Blank disks must be
formatted before you can save information on them for the first time; same as initialize.

frequency: The rate at which a repetitive event recurs. In alternating current (AC)
signals, the number of cycles per second. Frequency is usually expressed in hertz (cycles
per second), kilohertz, or megahertz.

function: A programmed sequence of operations that can be carried out on request from
any point in a program. A function takes one or more arguments and returns a single
value. It can therefore be embedded in an expression.

game 110 connector: A 16-pin connector inside all the open models of the Apple II,
originally designed for connecting hand controls to the computer, but also used for
connecting some other peripheral devices. Compare hand control connector.

GLU: Acronym for genera/logic unit, a class of custom integrated circuits used as
interfaces between different parts of the computer.

graph: A pictorial representation of data.

graphics: (I) Information presented in the form of pictures or images. (2) The display
of pictures or images on a computer's display screen. Compare text.

hand controls: Peripheral devices, with rotating dials and push buttons. Hand controls
are used to control game-playing programs, but they can also be used in other applications.

hand control connector: A 9-pin connector on the back panel of the Apple lIe ,
Apple lIc, and Apple IIGS computers, used for connecting hand controls to the computer.
Compare game I/O connector.

112

'-

Glossary

handshaking: The exchange of status infonnation between a DCE and a DTE used to
control the transfer of data between them. The status infonnation can be the state of a
signal connecting the DeE and the DTE, or it can be in the fonn of a character transmitted
with the rest of the data. See Data Set Ready, Data Terminal Ready, Data Carrier
Detect, XON, XOFF.

hertz: The unit of frequency of vibration or oscillation, defined as the number of cycles
per second. Named for the physicist Heinrich Henz and abbreviated Hz. See kilohertz,
megahertz.

hexadecimal: The base-I 6 system of numbers, using the ten digits 0 through 9 and the
six letters A through F. Hexadecimal numbers can be convened easily and directly to
binary fonn, because each hexadecimal digit corresponds to a sequence of four bits.
Hexadecimal numbers are usually preceded by a dollar sign ($).

high-level language: A programming language that is relatively easy for people to
understand. A single statement in a high-level language typically corresponds to several
instructions of machine language. Compare low-level language.

high-{)rder byte: The more significant half of a memory address or other multi-byte
quantity. In the 6502 microprocessor used in the Apple II family of computers, the
low-{)rder byte of an address is usually stored first, and the high-order byte second.
(In the 68000 microprocessors used in the Macintosh family, the high-order byte is stored
first.)

Hi-Res: A high-resolution display mode on the Apple IT family of computers,
consisting of an array of points, 280 wide by 192 high; with 6 colors.

Hz: See hertz.

128K Apple II: Any standard Apple IT with both main and auxiliary 64K banks of
RAM. That includes all models of the Apple IIc and some models of the Apple lIe,
including those with the Extended 80-Column Text Card installed. The Apple llGS is not a
l28K Apple II in the strict sense, even though it includes both 64K banks of RAM and is
capable of running programs designed for a 128K Apple II.

IC: See integrated circuit.

icon: An image that graphically represents an object, a concept, or a message.

implement: To put into practical effect, as to implement a plan. For example, a language
translator implements a particular language.

index register: A register in a computer processor that holds an index for use in indexed
addressing. The 6502 and 65C816 microprocessors used in the Apple II family of
computers have two index registers, called the X register and the Y register.

indexed addressing: A method used in machine-language programming to specify
memory addresses. See also memory location.

input: (n) Infonnation transferred into a computer from some external source, such as the
keyboard, a disk drive, or a modem.

113

Technical Introduction ro rhe Apple lIGS

input/output (110): The process by which information is transferred between the
computer's memory and its keyboard or peripheral devices.

instruction: A unit of a machine-language or assembly-language program
corresponding to a single action for the computer's processor to perform.

integrated circuit: An electronic circuit-including components and
interconnections--entirely contained in a single piece of semiconducting material, usually
silicon. Often referred to as an Ie or a chip.

interactive: Operating by means of a dialog between the computer system and a human
user.

interface: (1) The point at which independent systems or diverse groups interact The
devices, rules, or conventions by which one component of a system communicates with
another. Also, the point of communication between a person and a computer. (2) The part
of a program that defmes constants, variables, data structures, and procedure-<:alling
conventions, rather than procedures themselves.

interface card: A peripheral card that implements a particular interface (such as a parallel
or serial interface) by which the computer can communicate with a peripheral device such
as a printer or modem.

interrupt: A temporary suspension in the execution of a program that allows the
computer to perform some other task, typically in response to a signal from a peripheral
device or other source external to the computer.

110: See input/output.

110 device: Input/output device. A device that transfers information into or out of a
computer.

110 link: A fixed location that contains the address of an input/output subroutine in the
computer's Monitor program. ~

IWM: Abbreviation for Integrated Woz Machine, the custom chip used in built-in disk
ports on Apple computers.

joystick: A peripheral device with a lever, typically used to move creatures and objects in
game programs; a joystick can also used in applications such as computer-aided design and
graphics programs.

K: See kilobyte.

keyboard: The set of keys, similar to a typewriter keyboard, used for entering
information into the computer.

kilobit: A unit of measurement, 1024 bits, commonly used in specifying the capacity of
memory ICs. Not to be confused with kilobyte.

114

Glossary

kilobyte (K): A unit of measurement of computer data or memory, consisting of 1024
(210) bytes. When used this way, kilo (from the Greek, meaning a thousand) stands for
1024. Thus, 64K memory equals 65,536 bytes. See also megabyte.

kilohertz: A unit of measurement of frequency, equal to 1000 hertz (abbreviated
kHz). See also megahertz.

KSW: The symbolic name of the location in the computer's memory where the standard
input link (namely, to the keyboard) is stored. KSW stands for keyboard switch.

language: See programming language.

language card: A peripheral card that, when installed in slot 0 of a 48K Apple II or
Apple II Plus, gives the computer a total of 64K of memory. In Apple II's with 64K or
more of memory, the part of memory equivalent to that occupied by a language card is
sometimes called language-card memory.

line length: The number of characters that fit in a line on the screen or on a page.

load: To transfer information from a peripheral storage medium (such as a disk) into main
memory for use--for example, to transfer a program into memory for execution.

loader: A program that brings files from a disk into the computer's memory.

location: See memory location.

logic board: See main logic board.

loop: A section of a program that is executed repeatedly until a limit or condition is met,
such as an index variable's reaching a specified ending value. See loop.

low-levellanguage: A programming language that is relatively close to the form the
computer's processor can execute directly. One statement in a low-level language
corresponds to a single machine-language instruction. Compare high-level language.

low-order byte: The least significant byte of a memory address or other multi-byte
quantity. In the 6502 and 65C816 microprocessors used in the Apple II family of
computers, the low-order byte of an address is usually stored first, and the high-order
byte last. (In the 68000 microprocessors used in the Macintosh family, the high-order
byte is stored first.)

Lo-Res: The lowest-resolution graphics mode on the Apple II family of computers,
consisting of an array of blocks 48 high by 40 wide with 16 colors.

m flag: One of three flag bits in the 65C8l6 processor that programs use to control the
processor's operating modes. In native mode, the setting of the m flag determines whether
the accumulator is 8-bits wide or 16-bits wide. See e flag, x flag.

machine language: The form in which instructions to a computer are stored in memory
for direct execution by the computer's processor. Each model of computer processor (such
as the 6502 microprocessor used in 8-bit Apple II computers) has its own form of machine
language.

115

Technical Introduction to the Apple lIGS

Macintosh: A family of Apple computers built around 68000 microprocesson;, having
high-resolution black-and-white displays and using mouse devices for choosing
commands and for drawing pictures.

macro: A single predefined assembly-language pseudo-instruction that an assembler
replaces with several actual instructions. Macros are almost like higher-level instructions
that can be used inside assembly-language programs, making the programs easier to write.

macro assembler: A type of assembler that allows the programmer to define sequences
of several assembly- language instructions as single pseudo-instructions called macros.

main logic board: A large circuit board that holds RAM, ROM, the microprocessor,
custom- integrated circuits, and other components that make the computer a computer.

main memory: The part of a computer's memory whose contents are directly accessible
to the microprocessor; usually synonymous with random-access memory (RAM).

MARK parity: A bit of value 1 appended to a binary number for transmission. The
receiving device checks for errors by looking for this value on each character. Compare
even parity, odd parity.

Mega II: A custom large-scale integrated circuit that incorporates most of the timing and
control circuits of the standard Apple II. It addresses 128K of RAM organized as 64K
main and auxiliary banks and provides the standard Apple II video display modes, both
text (40-<;01umn and 80-<;01umn) and graphics (Lo-Res, Hi-Res, and Double Hi-Res).

megabit: A unit of measurement, 1,048,576 (2 16) bits or 1024 kilobits, commonly
used in specifying the capacity of memory ICs. Not to be confused with megabyte.

megabyte: A unit of measurement of computer data or memory, equal to 1,048,576
bytes or 1024 kilobytes; abbreviated Mb.

megahertz: A unit of measurement of frequency, equal to 1,000,000 hertz
(abbreviated MHz). See also kilohertz.

memory: The hardware component of a computer system that stores information for later
retrieval. See also main memory, random-access memory, read-only memory,
read-write memory.

memory location: A unit of main memory that is identified by an address and can hold
a single item of infonnation of a fixed size. In the Apple II family of computers, a
memory location holds one byte.

Memory Manager: One of the programs in the Toolbox. Its job is to allocate memory
so that applications and desk accessories can run without clobbering each other.

memory-mapped I/O: The method used for I/O operations in Apple II computers,
where certain memory locations are attached to I/O devices, and I/O operations are just
memory load and store instructions.

116

Glossary

memory-resident: (adj) (1) StOl:ed permanently in D1eD1ory as fIrmware (ROM). (2)
Held continually in RAM even while not in use. DOS is a memory-resident program.
Compare disk-resident.

menu: A list of choices presented by a program, from, which you can select an action.
Menus appear when you point to and press menu titles in the menu bar. Dragging
through the menu and releasing the mouse button while a command is highlighted chooses
that command.

menu bar: The horizontal strip at the top of the screen that contains menu titles.

menu title: A word, phrase, or icon in the menu bar that designates one menu. Pressing
on the menu title causes the title to be highlighted and its menu to appear below it.

MHz: Abbreviation for megahertz, one million hertz. See hertz.

microprocessor: A cOD1puter processor contained in a single integrated circuit. The
microprocessor is the central processing unit (CPU) of the microcomputer.
Examples include the 6502 and 65C816 microprocessors used in the Apple II family of
computers and the 68000 microprocessor used in the Macintosh family.

microsecond: One millionth of a second. Abbreviated J.lS.

millisecond: One thousandth of a second. Abbreviated ms.

mode: A state of a cOD1puter or system that determines its behavior. A manner of
operating.

modem: Short for MOdulator/DEModulator. A peripheral device that links a computer to
other computers and information services using the telephone lines.

monitor: See video monitor.

Monitor program: A system program built into the fIrmware of Apple II computers,
used for directly inspecting or changing the contents of main memory and for operating the
computer at the machine-language level.

MOS: Abbreviation for metal oxide silicon, a method of semiconductor integrated--{;ircuit
fabrication on silicon using layers of silicon dioxide in the make-up of the devices.
Compare CMOS.

mouse: A small device you move around on a flat surface next to your computer. The
mouse controls a pointer on the screen whose movements correspond to those of the
mouse. You use the pointer to select operations, to move data, and to draw with in
graphics programs.

mouse button: The button on the top of the mouse. In general, pressing the mouse
button initiates some action on whatever is under the pointer, and releasing the button
confIrms the action.

117

Technical Introduction to the Apple IIGS

NTSC: (1) Abbreviation for National Television Standards Committee. The committee
that defIDed the standard format used for transmitting broadcast video signals in the United
States. (2) The standard video format defined by ihe NTSC, also called composite,
because it combines all the video information, including color, into a single signal.

object code: See object program.

object program: The translated form of a program produced by a language translator
such as a compiler or assembler. Also called object code. Compare source program.

odd parity: In data transmission, the use of an extra bit set to 0 or I as necessary to
make the total number of I bits an odd number; used as a means of error checking.
Compare even parity, MARK parity.

128K Apple II: Any standard Apple II with both main and auxiliary 64K banks of
RAM. That includes all models of the Apple IIc and some models of the Apple lIe,
including those with the Extended 80-Column Text Card installed. The Apple IIGS is not a
128K Apple II in the striCt sense, even though it includes both 64K banks of RAM and is
capable of running programs designed for a 128K Apple II.

opcode: See operation code.

Open Apple: A modifier key on some Apple II-family keyboards; on the Apple IIGS
keyboard, the equivalent key is marked with both an Apple icon and a spinner, the icon
used on some Macintosh keyboards, and called simply the Apple key.

operation code: The machine-language representation of a computer instruction.

system program: A program that makes the resources and capabilities of the computer
available for general purposes, such as an operating system or a language translator.
Compare application program.

operating system: A general-purpose program that manages the actions of the parts of
the computer and its peripheral devices for the benefit of the application programs. See
Disk Operating System.

overrun: A condition that occurs when the processor does not retrieve a received
character from the receive data register of a communications interface device before the
subsequent character arrives to occupy that register.

page: (1) A segment of main memory 256 bytes long and beginning at an address that is
an even multiple of 256. (2) An area of main memory containing text or graphical
information being displayed on the screen.

page zero: See zero page.

parallel interface: An interface in which several bits of information (typically 8 bits,
or I byte) are transmitted simultaneously over different wires or channels. Compare serial
interface.

parameter: An argument that determines the outcome of a command. For example, in
the command write(n,msg), nand msg are parameters.

118

Glossary

parity: Sameness of level or count, usually the count of I bits in each character, used for
error checking in data transmission. See even parity, MARK parity, odd parity,
parity bit.

parity bit: A bit used to check for errors during data transmission. Depending on the
number of I bits in a transmission, the parity bit is set to I or 0 to make the total number of
1 bits even or odd.

Pascal: A high-level programming language with statements that resemble English
phrases. Pascal was designed to teach programming as a systematic approach to problem
solving. Named after the philosopher and mathematician Blaise Pascal.

peripheral: (adj) At or outside the boundaries of the computer itself, either physically (as
a peripheral device) or in a logical sense (as a peripheral card). (n) Short for peripheral
device.

peripheral card: A removable printed-<:ircuit board that plugs into one of the
computer's expansion slots. Peripheral cards enable the computer to use peripheral devices
or to perform other subsidiary or peripheral functions.

peripheral device: A piece of hardware-such as a video monitor, disk drive, printer,
or modem-used in conjunction with a computer and under the computer's control.
Peripheral devices are often (but not necessarily) physically separate from the computer and
connected to it by wires, cables, or some other form of interface. They often require
peripheral cards.

peripheral slot: See expansion slot.

phase: (I) A stage in a periodic process. A point in a cycle. For example, the 65C816
microprocessor uses a clock cycle consisting of two phases called <llO and cl> I. (2) The
relationship between two periodic signals or processes.

pixel: Short for picture element. The smallest dot you can draw on the screen. Also, a
location in video memory that corresponds to a point on the graphics screen when the
viewing window includes that location. In the Macintosh display, each pixel can be either
black or white, so it can be represented by a bit; thus, the display is said to be a bitmap.
In the Super Hi-Res display on the Apple IIGS, each pixel is represented by either two or
four bits; the display is not a bitmap, but rather a pixelmap.

pixelmap: A set of values that represents the positions and states of the set of pixels
making up an image. Compare bitmap.

pop: To retrieve an entry from the top of a stack, moving the stack pointer to point to the
previous entry. Compare push.

port: A socket on the back panel of the computer where you can plug in a cable to connect
a peripheral device, another computer, or a network.

PR#: An Applesoft BASIC command that directs output to a slot or a machine-language
program. It activates an output routine in the ROM on a peripheral card or in equivalent
RAM by changing the address of the standard output routine used by the computer.

119

Technical Introduction to the Apple lles

procedure: In the Pascal and Logo programming languages, a sequence of instructions
that work as a unit; approximately equivalent to the term function in C or subroutine in
BASIC.

processor: The hardware component of a computer that performs the aCtual computation
by directly executing instructions represented in machine language and stored in main
memory. See microprocessor.

ProDOS: A disk operating system for the Apple II family of computers. ProDOS
stands for Professional Disk Operating System, and includes ProDOS 8 and ProDOS 16.

ProDOS 8: A disk operating system for the Apple II. It runs on 6502 and 65C02
microprocessors and on the 65C816 in 6502 emulation mode.

ProDOS 16: The disk operating system designed for the Apple IIGS. ProDOS 16
is similar to ProDOS 8, but was designed to run on the 65C816 microprocessor in the
Apple IIGS.

program: (n) A sequence of instructions describing actions for a computer to perform in
order to accomplish some task, conforming to the rules and conventions of a particular
programming language. (v) To write a program.

programmable read-only memory: A type of ROM device that is programmed after
fabrication, unlike ordinary ROM devices, which are programmed during fabrication.

programming language: A set of symbols and associated rules or conventions for
writing programs. BASIC, Logo, and Pascal are programming languages.

PROM: See Programmable Read-Only Memory.

prompt: A message on the screen that tells you of some need for response or action. A
prompt usually takes the form of a symbol, a message, a dialog box, or a menu of choices.

prompt character: A text character displayed on the screen, usually just to the left of a
cursor, where your next action is expected. The prompt character often identifies the
program or component of the system that's prompting you. For example, Applesoft
BASIC uses a square bracket prompt character (]); the system Monitor program, an asterisk
(*); and the Mini-assembler, an exclamation point (!).

protocol: A formal set of rules for the interchange of information between two programs
or devices; for example, the rules for sending and receiving data on a communication line.

Protocol Converter: A set of ROM-based assembly-language routines used to support
external I/O devices such as the Apple Memory Expansion Card and the Apple 3.5 Drive.

push: To add an entry to the top of a stack, moving the stack pointer to point to it.
Compare pop.

queue: A list in which entries are added at one end and removed at the other, causing
entries to be removed in first-in, first-{)ut (FIFO) order. Compare stack.

120

Glossary

QWERTY keyboard: The standard layout of keys on a typewriter keyboard; its name is
formed from the ftrst six letters on the top row of letter keys. Compare Dvorak

'-... keyboard.

RGB monitor: A type of color monitor that receives separate signals for each color (red,
green, and blue). See composite video.

RAM: See random-access memory.

random-access memory (RAM): Memory in which information can be referred to in
an arbitrary or random order. As commonly used, RAM means the part of memory
available for programs from a disk; the programs and other data are lost when the computer
is turned off. (Technically, the read-<>nly memory (ROM) is also random access, and
what's called RAM should correctly be termed read-write memory.) Compare read-<mly
memory, read-write memory.

read-{)nly memory (ROM): Memory whose contents can be read, but not changed;
used for storing firmware. Information is placed into read-<>nly memory once, during
manufacture; it then remains there permanently, even when the computer's power is turned
off. Compare random-access memory, read-write memory, writC-{)nly
memory.

read-write memory: Memory whose contents can be both read and changed (or written
to); commonly called RAM. The information contained in read-write memory is erased
when the computer's power is turned off and is permanently lost unless it has been saved
on a disk or other storage device. Compare random-access memory, read-only
memory.

reentrant: Characteristic of a program routine that is able to accept a call while one or
more previous calls to it are pending without invalidating any previous calls.

register: A location in a processor or other device where an item of information is held
and modifted under program control.

Resource Manager: A Macintosh tool for editing data in program segments without
recompiling them.

resident: See memory-resident, disk-resident.

return address: The point in a program to which control returns on completion of a
subroutine or function.

RGB: Abbreviation for red-green-blue, a method of displaying color video by
transmitting the three primary colors as three separate signals. There are two ways of using
ROB with computers: TTL RGB, which allows the color signals to take on only a few
discrete values; and analog RGB, which allows the color signals to take on any values
between their upper and lower limits, for a wide range of colors.

ROM: See read-only memory.

routine: A part of a program that accomplishes some task subordinate to the overall task
of the program.

121

Technical Introduction to the Apple IIes

row: A horizontal line of character cells or graphics pixels on the screen.

RS-232: A common standard for serial data--<:ommunication interfaces.

RS·422: A standard for serial data--<:ommunication interfaces, different from the RS-232
standard in its electrical characteristics and in its use of differential pairs for data signals.
The serial ports on the Apple IIGS use RS-422 devices modified so as to be compatible
with RS-232 devices.

SANE: See Standard Apple Numeric Environment.

SCC: Acronym for Serial Communications Controller, a type of communications IC used
in the Apple IIGS computer. See ACIA.

screen holes: Locations in the text display buffer (text Page I) used for temporary
storage either by I/O routines running in peripheral--<:ard ROM or by fmnware routines
addressed as if they were in card ROM. Text Page I occupies memory from $400 to $7FF;
the screen holes are locations in that area that are neither displayed nor modified by the
display fmnware.

serial interface: An interface in which information is transmitted sequentially, a bit at a
time, over a single wire or channel. Compare parallel interface.

serial port: The connector for a peripheral device that uses a serial interface.

silicon: A solid, crystalline chemical element (symbol Si) from which integrated circuits
are made. Silicon is a semiconductor; that is, it conducts electricity better than insulators,
but not as well as metallic conductors. Silicon should not be confused with silica-that is,
silicon dioxide, such as quartz, opal, or sand----<Jr with silicone, any of a group of organic
compounds containing silicon.

Simplified Keyboard: See Dvorak keyboard.

64K Apple ll: Any standard Apple II that has at least 64K of RAM. That includes the
Apple IIc, the Apple lIe, and an Apple II or Apple II Plus with 48K of RAM and the
Language Card installed.

6502: The microprocessor used in the Apple II, in the Apple II Plus, and in early
models of the Apple lIe. The 6502 is an MOS device with 8-bit data registers and 16-bit
address registers.

65C02: A CMOS version of the 6502; the microprocessor used in the Apple IIc and in
the enhanced Apple lIe.

65C816: The microprocessor used in the Apple IIGs. The 65C816 is a CMOS device
with 16-bit data registers and 24-bit address registers.

68000: The microprocessor used in the Macintosh and Macintosh Plus. The 68000 has
32-bit data and address registers.

slot: A narrow socket inside the computer where you can install peripheral cards. Also
called an expansion slot.

122

Glossary

soft switch: A location in memory that produces some specific effect whenever its
contents are read or written.

software: A collective term for programs, the instructions that tell the computer what to
do. They're usually stored on disks. Compare firmware.

source code: See source program.

source program: The form of a program given to a language translator, such as a
compiler or assembler, for conversion into another form; sometimes called source code.
Compare object -program. --

stack:. A list in which entries are added (pushed) or removed (popped) at one end only
(the top of the stack), causing them to be removed in last-in, frrst-{mt (LIFO) order.
Compare queue. -

Standard Apple II: Any computer in the Apple II family except the Apple IIGS. That
includes the Apple II, the Apple II Plus, the Apple lie, and the Apple IIc.

Standard Apple Numerics Environment: Apple's implementation of IEEE standard
floating-point arithmetic, used on the Apple II and Macintosh families of computers.

start bit: One or two bits that indicate the beginning of a character in a string of serially
transmitted characters.

start up: To get the system running. Starting up is the process of frrst reading the
operating system program from the disk, and then running an application program. See
boot.

startup disk: A disk with all the necessary program fIles to set the computer into
operation. Sometimes called a boot disk.

stop bit: A bit indicating the end of a character in a string of serially transmitted
characters.

strobe: A signal whose change is used-to trigger some action.

subdirectory: A directory within a directory. A file containing the names and locations
of other fIles. -- -

subroutine: A part of a program that can be executed on request from another point in
the program and that, on completion, returns control to that point.

system: A coordinated collection of interrelated and interacting parts organized to
perform some function or achieve some purpose--for example, a computer system
comprising a processor, keyboard, monitor, and disk drive.

system configuration: See configuration.

system program: A program that makes the resources and capabilities of the computer
available for general purposes, such as an operating system or a language translator.
Compare application program.

123

Technical Introduction to the Apple IIeS

system software: The component of a computer system that supports application
programs by managing system resources such as memory and I/O devices.

text: (1) Information presented in the form ofreadable characters. (2) The display of
characters on a display screen. Compare graphics:

text window: A window on the desktop within which text is displayed and scrolled.

toolbox: A collection of built-in routines that programs can call to perform many
commonly-needed functions.

transistor-transistor logic (TTL): (1) A family of integrated circuits having bipolar
circuit logic; TTL ICs are used in computers and related devices. (2) A standard for
interconnecting such circuits, which defines the voltages used to represent logical zeros and
ones.

TTL: See transistor-transistor logic.

TTL RGB: A type of video monitor that can accept only a limited number of digital
values and display only a correspondingly limited number of colors. Compare analog
RGB.

type-ahead buffer: A buffer that accepts and holds characters that are typed faster
than the computer can process them.

user: A person operating or controlling a computer system.

user interface: The rules and conventions by which a computer system communicates
with the person operating it.

utilities: Programs that let you rename, copy, format, delete, and otherwise manipulate
files and volumes.

value: An item of information that can be stored in a variable, such as a number or a
string.

variable: (1) A location in the computer's memory where a value can be stored. (2) The
symbol used in a program to represent such a location.

VBL: Short for vertical blanking, an interrupt signal generated by the video timing circuit
each time it finisres a vertical scan, 60 times a second.

vector: (1) The starting address of a program segment when used as a common point for
transferring control from other programs. (2) A memory location used to hold a vector, or
the address of such a location.

video: (1) A medium for transmitting information in the form of images to be displayed
on the screen of a cathode-ray tube. (2) Information organized or transmitted in video
form.

124

Glossary

video monitor: A display device that can receive video signals by direct connection
only, and that cannot receive broadcast signals such as commercial television. Can be
connected directly to the computer as a display device.

warm start: The process of transferring control back to the operating system in
response to a failure in an application program. Compare cold start.

window: The area that displays information on a desktop. You view a document
through a window. You can open or close a window, move it around on the desktop, and
sometimes change its size, scroll through it, and edit its contents.

word: A group of bitS that is treated as a unit. The number of bits in a word is a
characteristic of each particular computer; in the Apple IIGS, words are sixteen bits wide.

wraparound: The automatic continuation of text from the end of one line to the
beginning of the next; wraparound means that you don't have to press the Return key at the
end of each line as you type.

write-only memory: A form of computer memory into which information can be stored
but never, ever retrieved. For more information, refer to The Life of Homberg T.
Farnsfarfle, by Bruce Tognazzini.

x flag: One of three flag bits in the 65C816 processor that programs use to control the
processor's operating modes. In native. mode, the setting of the x flag determines whether
the index registers are 8-bits wide or 16-bits wide. See e flag, m flag.

XON: A special character (ASCn value $13) used for controlling the transfer of data
between a DTE and a DCE. See handshaking, XOFF.

XOFF: A special character (AScn value $11) used for controlling the transfer of data
between a DTE and a DCE. When one piece of equipment receives an XOFF character
from the other, it stops transmitting characters until it receives an XON. See
handshaking, XON.

X register: One of the two index registers in the 6502 microprocessor.

Y register: One of the two index registers in the 6502 microprocessor.

zero page: The first page (256 bytes) of memory in the Apple II family of computers,
also called page zero. Since the high-<Jrder byte of any address in this page is zero, only
the low-Qrder byte is needed to specify a zero-page address; this makes zero-page
locations more efficient to address, in both time and space, than locations in any other page
of memory. The 65C816 microprocessor used in the Apple IIGS has a relocatable zero
page called the direct page.

125

Tec;hnicallntroduction to the Apple I1GS

126

