
~~" ~~ , II
, ~I·~ GS/OS

APPLE
PROGRAMMER'S
AND OEVELOPEWS
ASSOCIATION

• Reference,
" Volume 1

Beta Draft
'" APDA# K2S023

Apple" II GS/OSTM Reference

Includes System Loader

Volume 1:
Applications and GS/OS

APDADraft

August 31, 1988

© Copyright Apple Computer, Inc. 1988

GSiOS Reference

'* Apple Computer, Inc.

This manual is copyrighted by Apple or by Apple's
suppliers, wilh all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in
part, wilhout the written consent of Apple Computer,
Inc. This exception does f1C(allow copies to be mde
for others, whether or not sold, but all of the material

purcllased my be sold, given, or lent to another
person Under the Jaw, copying includes translating

into another language.

© Apple Computer, Inc., 1988

20525 Mariani Avenue

Cupenino, CA 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk, Apple IIGS,
DuoDisk, ProDOS, Macintosh, and nGS are registered
trademarks of Apple Computer, Inc.

APDA, Finder, ProFile, and UniDisk are trademarks of

Apple Computer, Inc.

Simultaneously published in the United States and
Canada.

2121/88

Draft 3 (APDA) 8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

Contents

Figures and Tables xiv

Preface / 1

About this book / 2

How to use this book / 2
What it contains / 3
Other materials you'll need / 5
Visual cues / 5
Terminology / 5
Uinguage notation / 6

Roadrnap to the Apple IIGS technical manuals / 6
Introductory Apple IIGS manuals / 7
Apple fiGS machine-reference manuals / 9
Apple fiGS Toolbox manuals / 10

Apple IIGS operating-system manuals / 10

All-Apple manuals / 11

The APW manuals / 11

The MPW IIGS manuals / 12

The debugger manual / 12

Introduction What is GS/OS? / 13

The components of GS/OS / 14

GS/OS Features / 16
File-system independence / 16
Enhanced device support / 16
Speed enhancements / 17
Eliminated ProDOS restrictions / 17
ProDOS 16 compatibility / 17

8/31/88

Contents iU

GSiOS Reference (Volume 1) Draft 3 (APDA)

Where to find call descriptions / 17

GS/OS system requirements / 19

Background to the development of GS/OS / 20

Part I The ApplicatJon Level / 23

1 GS/OS Abstract Flle System / 25
A high·level interface / 26

iv GS/OS Reference

Classes of GS/OS files / 28
Directory files / 28
Standard files / 29
Extended files / 30

Filenames / 30

Pathnames / 31
Full pathnames / 31
PrefIXes and partial pathnames / 32

PrefIX designators / 32
Predefined prefIX designators / 33

File infonnation / 34
File access / 35
rue types and auxiliary types / 35
EOF and mark / 37
Creation and modification date and time / 39
Character devices as flles / 39

Groups of GS/OS calls / 40
File access calls / 41
Volume and pathname calls / 42
System infonnation calls / 43
Device caJls / 43

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

2 GS/OS and Its Environment / 45

Apple IIGS memory / 46
Entry points and fIXed loc:ltions / 47

Managing application memory / 48
Obtaining appUcation memory / 49
Accessing data in a movable memory block / 49

Allocating stack and direct page / 51
Automatic allocation of stack and direct page / 52
Defmition during program development / 52
Allocation at load time / 52
GSiOS default stack and direct page / 53

System staffiJp considerations / 54

Quitting and launching applications / 54
Specifying whether an application can be restarted from memory / 54
Specifying the next application to launch / 55

Specifying a GS/OS application to launch / 55
Specifying a ProDOS 8 application to launch / 55

Specifying whether control should return to your application ./ 56
Quitting without specifying the next application to launch / 56
Launching another application and not returning / 56
Launching another application and returning / 57

Machine state at application launch / 57
Machine state at GS/OS application launch / 57
Machine state at ProDOS 8 application launch / 59
Pathname prefIXes at GS/OS application launch / 59
Pathname prefIXes at ProDOS 8 application launch / 61

Contents v

8/3 1/88

GSiOS RejerenCl! (Volume 1) Draft 3 (APDA)

3 Making GS/OS Calls / 63
GS/OS call methods / 64

Calling in a h.igh-levellanguage / 64
calling in assembly language / 64

Making a GS/OS call using macros / 6S
Making an inline GS/OS call / 66
Making a stack call / 66

Including the appropriate files / 67

GSIOS parameter blocks / 67
Types of parameters / 67
Parameter block format / 68
GS/OS string format / 68

GS/OS input string strucrures / 69
GS/OS result buffer / 69

Setting up a parameter block in memory / 70

Conditions upon return from a GS/OS call / 71

Checkingfor errors / 72

4 Accessing GS/OS Flies / 73
The simplest access method / 74

Creating a fIle / 74

vi GSiOS Reference

Opening a file / 75

Working on open files / 76
Reading from and writing [0 files / 76
Setting and reading the EOF and Mark / 77
Enabling or disabling newline mode / 77
Examining directory entries / 77
Flushing open files / 77
Closing files / 77

Setting and getting me levels / 78

Working on closed fUes / 78
Clearing backup status / 79
Deleting ftles / 79

8/31/88

GYOS RejerenClJ (Volume 1) Drajl3 (APDA)

Setting or getting ftle characteristics / 79

Changing the creation and modification date and time / 80

Copying ftles / 81
Copying single fIles / 81
Copying multiple fIles / 81

5 Working with Volumes and Pathnames / 83
Working with volumes / 83

Gelting volume information / 84
Building a list of mounted volUires / 84
Getting the name of the boot volume / 84
Formatting a volume / 85

Working with pathnames / 85
Setting and getting prefIXes / 86
Changing the path to a me / 86
Expanding a pathname / 86
Building your own pathnames / 86

Introducing devices / 87
Device names / 87
Block devices / 87
Character devices / 88
Direct access to devices / 88
Device drivers / 88

6 Working with System Information / 91
Setting and getting system preferences / 92

Checking FST information / 92

Finding out the version of the operating system / 92

Getting the name of the cwrent application / 93

8/31/88

Contents vii

GS/OS Reference (Volume 1) Drajl3 (APDA) 8/31/88

7 GS/OS Call Reference / 95
The parameter block diagram and description / 96
$20lD BeginSession / 97

$2031 BindInt / 98

$2004 ChangePath / 99

$200B ClearBackup / 101

$2014 Close / 102

$2001 Create / 103

$202£ DControl / 108

$2002 Destroy / 11 0

$202C Dlnfo / 112

$202F DRead / 116

$202D DStarus / 118

$2030 DWrile / 120

$201E EndSession / 122 -~

$2025 EraseDisk / 123

$2ooE ExpandPath / 125

$2015 Flush / 127

$2024 Format /129

$2028 GetBootVol / 131

$2020 GetDevNumber / 132

$201C GetDirEntry / 134

$2019 GetEOF / 139

$2006 GetFileInfo / 140

$202B GetFSI1nfo / 144

$201B GetLeve1 / 147

$2017 GetMark / 148

$2027 GetName / 149

$200A GetPreflX / 1 SO

$2ooF GetSysPrefs / 151

vin GSiOS Reference

G!'IOS Reference (Volume 1)

$202A GetVersion / 152

$2011 Newline / 153

$2000 Null / 155

$2010 Open / 156

Draft 3 (APDtI)

$2003 OSShutdown 161

$2029 Quit / 163

$2012 Read / 165

$201F SessionStatus / 168

$2018 Se~F / 169

$2005 SetFileWo / 171

$lOIA SetLevel / 175

$2016 SetMark / 176

$2009 SetPrefIx / 178

$200c SetSysPrefs / 180

$2032 UnbindInt / 182

$2008 Volume / 183

$2013 Write / 185

Part n The FIk System Level / 187

8 FIle System T1'lUISiators / 189
The FST Concept / 190

Calls handled by FSTs / 192

Programming for multiple fIle systems / 193
Don't assume fIle characteristics / 193
Use GetDirEntry / 194
Keep rebuilding your device list / 194
Handle errors properly / 194
FSTs and fIle-aocess optimi2:!tion / 195

Present and future FSTs / 195

Disk initialization and FSTs / 196

8/31/88

Contents il<

GSiOS Reference (Volume 1) Draft 3 (APDA)

9 The ProDOS FSI' / 199

The ProOOS me system / 200

GS/OS and the ProOOS FSf / 200

CaIJs CO the ProOOS FSf / 201
GetDirEntry ($201C) / 201
GetFileWo ($2006) / 202
SetFileinfo ($2005) / 202

10 The High Sierra FSI' / 203

CD-ROM and the High Sierra/ISO 9660 formats / 204

limitations of the High Sierra FST / 205

Apple extensions CO ISO 9660 / 207

High Sierra FSf calls / 208
GetFileWo ($2006) / 209
Volume ($2008) / 210
Open ($2010) / 210
Read ($2012) / 211

GetDirEntry ($201C) / 212

$2033 FSfSpecific / 214
What a map table is / 215
MapEnable (FSfSpecific subcall) / 216
GetMapSize (FSfSpecific subcall) / 217
GetMapTable (FSTSpecific subcall) / 217
SelMapTable (FSTSpecific subcall) / 218

11 The Character FSI' / 221

Character devices as files / 222

Character PST calls / 222
Open ($2010) / 223
Read ($2012) / 223
Write ($2013) / 224
Close ($2014) / 224
Flush ($2015) / 225

x GSiOS Reference

8/3 1/88

GSiOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendixes / 227

Appendix A GS/OS ProDOS 16 calls / 229

$0031 AllOC~INI'ERRUPT / 230

$0004 CHANGE]ATH / 231

$OOOB CLEAR_BACKUP _BIT / 233

$0014 CLOSE / 234

$0001 CREATE / 235

$0032 DEAllOCINTERRUPT / 239

$0002 DESTROY / 240

$OO2C DJNFO / 242

$0025 ERASE_DISK / 243

$OOOE EXPAND]ATH / 245

$0015 FLUSH /247

$0024 FORMAT /248

$0028 GET_BOOT_VOL / 250

$0020 GET_DEV_NUM / 251

$00lC GET_DIR_ENTRY / 252

$0019 GET_EOF / 256

$0006 GET]lLEJNFO / 257

$0021 GE1'_usr_DEV / 260

$OOlB GET_LEVEL / 262

$0017 GE'CMARK / 263

$0027 GET_NAME / 264

$OOOA GET]REFlX / 265

$OO2A GET_VERSION / 266

SOOl1 NEWIlNE / 267

$0010 OPEN / 269

$0029 QUIT / 271

$0012 READ / 273

Contents xi

GYOS Reference (Volume 1) Draft 3 (APDA)

$0022 READ_BLOCK / 275

$0018 SE"UOF / 276

$0005 / SET]ILE_INFO / m
$00IA SET_LEVEL / 280

$0016 SET_MARK / 281

$0009 SET_PREFIX / 282

$0008 VOLUME / 284

$0013 WRITE / 286

$0023 WRITE_BLOCK / 288

Appendix B ProDOS 16 Calls and FSIs / 289

The ProDOS FST / 290

The High Sierra PST / 290
GET_FILE_INFO ($06) / 291
VOLUME ($08) / 292
GET_DIRJWfRY ($IC) / 292

The Character PST / 293
OPEN ($10) / 293
READ ($12) / 294

WRITE ($13) / 294
CLOSE ($14) / 294

FLUSH ($15) / 295
ProDOS 16 device calls / 295

Appendix C The GS/OS Exerclser / 297

Starting the Exerciser / 298

Call options / 299

Making GS/OS calls / 299

Other conunands / 301

xii GSiOS Reference

8/31188

GYOS Reference (Volume 1) Draft 3 (APDA)

Appendix D GS/OS System Dlsks and Startup / 30;

Application system disks / 306
System stanup from ProDOS volumes / 307

System stanup from non-ProOOS volumes / 308
Startup (boot file routine) / 309
ReadInFile (boot me routine) / 310
GetBootName (boot me routine) / 311
GetFSTName (boot file routine) / 311
Sample boot file startup routine / 312

Appendix E Apple Extensions to ISO 9660 / 317

What the Apple extensions do / 318

The protocol identifier / 318

The Directory Record SystemUse Field / 320
SystemUseID / 322

Filename transfonnations / 324
ProOOS / 324
Macintosh HFS / 325

150 9660 associated files / 326

Appendix F GS/OS Error Codes and Constants / 327

Glossary / 331

8/31188

Contents xiii

GSiOS Reference (Volume 1) Draft 3 (APDA)

Figures and Tables

Preface / 1

Figure P-l, Roadmap to Apple IIGS technical manuals / 8

Table P-I Apple lIGS technical manuals / 9

Introduction What is G5/05? / 13

Figure 1-1 Interface levels in GS/OS / 14

Figure 1-2 Where to find call descriptions in this book. / 19

Part I The Application Level / 23

Chapter 1 G5/05 Abstract File System / 25
Figure 1-1 Application level in GS/OS / 26

Figure 1-2 Example of a hierarchical me structure / 27

Figure 1-3 Directory me fonnat / 29

Figure 1-4 PrefIXes and partial pathna= / 32

Figure 1-5 Automatic movement of EOF and mark / 38

Table I-I Examples of prefIX use / 34

Table 1-2 GS/OS fIle types and auxiliary types / 36

Table 1-3 GS/OS call groups / 41

Chapter 2 G5/05 and Its Environment / 45

Figure 2-1 Apple IIGS memory map / 46

Figure 2-2 Pointer; and handles / 51

Table 2-1 GS/OS vector space / 48

xiv GSiOS Reference

8/31/88

--

." "-.

GSiOS Reference (Volume 1) Draft 3 (APDA)

Table 2-2 Machine slate at GS/OS application launch / 57

Table 2-3 Machine slate at GS/OS application launch / 59

Table 2-4 PrefIx values when GS/OS application launched at boot time / 60

Table 2-5 PrefIx value~S/OS application launched after GS/OS
application quits / 60

Table 2.Q Prefix valu~S/OS application launched after ProDOS 8
application quits / 60

Table 2-7 Prefix and pathname values at ProDOS 8 application launch / 61

Chapter 3

Figure 3-1

Figure 3-2

Figure 3-3

Table 3-1

Table 3-2

Chapter 4

Table 4-1

Part n

Chapter 8
Figure 8-1

Table 8-1

Chapter 10

Making GSiOS Calls / 63
GSiOS and Pascal strin~ / 69

GS/OS input string structure / 69

GS/OS result buffer / 70

Registers on exit from GS/OS / 71

Status and control bits on exit from GS/OS / 72

Accessing GS/OS Flles / 73
Date and time format / 80

The Flle System Level / 187

Flle System Translators / 189

The me system level in GS/OS / 191

GS/OS calls handled by FSTs / 192

The High Sierra FSf / 203
Table 10-1 High Siena FST calls / 208

Figures and Tables xv

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

Appendixes / 227

Appendix B ProDOS 16 Calls and FSfs / 289

Table B-1 High Siena FST ProDOS 16 calls / 291

Appendix C The GS/OS Exerciser / 297

Figure C-1 Exerciser main screen / 298

Figure C-2 Parameter-setup screen / 300

Figure C-3 Device-list screen / 302

Figure C-4 Modify-memory screen / 303

Table C-1 ASCII table / 304

Appendix D GS/OS System. Disks and Startup / 305

Table D-1 Directories and ftIes on a GS/OS system disk / 306

Appendix E Apple Extensions to ISO 9660 / 317

Table E-l Defined values for SystemUseID / 322

Table E-2 Contents of SystemUse fjeld for each value of SystemUselD / 322

Table E-3 ProDOS-to-ISO 9660 filename transformations / 325

Appendix F GS/OS Error Codes and Constants / 327

Table F-l GS/OS error.; / 328

xvi GSlOS Reference

8/31/88

'.'--

GSiOS Re/erenCE (Volume 1) Draft 3 (APDA)

Preface

The GSiOS Reference describes a powerful operating system developed
specifically for the Apple® nGS® computer. GS/OST" is characterized by fast
execution, easy configurability, multiple file-system access, file access [0

character devices, direct device-access, device-independence, compatibility
with the large GS/OS memory space, and compatibility with standard-Apple II
(ProDOS® 8-based) and early Apple nGS@ (ProDOS 16-based) applications.

In two volumes, the GSiOS Reference describes how GS/OS gives applications
access to the the fuJj range of Apple nGS features, and shows how to create
device drivers to work with GS/OS.

Preface

8/31/88

GSiOS Reference (Volume J) Draft 3 (APDA)

About this book

The GSiOS Reference is a manual for software developers, advanced programmers, and others who
wish to understand the technical aspectS of this operating system. In particular, this manual wiU be
useful to you if you want to write

• any program that creates or accesses files

• a program that catalogs disks or manipulates files

• a stand-alone program that automatically runs when the computer starts up

• a program that loads and runs other programs

• any program using segmented, dynamic code

• an interrupt handler

• a device driver

The GSiOS Reference consists of two volumes plus one disk: the GS/OS Exerciser, a program included
on a disk accompanying Volume 1.

The functions and calls in this manual are in assembly-language format. If you are programming in
assembly language, you can use the same format to access operating system features. If you are
programming in a higher-level language (or if your assembler includes a GS/OS macro library), you wi ll
use library interface routines specific to your language. Those library routines are not described here;
consult your language manual.

The software described in this book is pan of the Apple IIGS System Disk, versions 4.0 and later. Apple
JIGS system disks are available from Apple dealers and from APDA (Apple Programmer's and
Developer's Association).

Note: System disks earlier than version 4.0 use ProDOS 16 as the operating system. ProDOS 16
is described in the Apple lIGS ProD OS 16 Reference.

How to use this book

This book is primarily a reference tool, although parts of each volume are explanatory.

2 GS/OS Reference

8/31/88

GSIOS Referena (Volume 1) Draft 3 (APDA)

Volume 1 describes the application interface, the high-level parts of GS/OS that your application calls
in order to access rues or to modify the operating environment

• The introduction to Volume 1 describes GS/OS in general.

8/31/88

• Part I of Volume 1 describes how applications interact with GS/OS, and documents all application
level GS/OS calls.

• Part II of Volume 1 documents the file system translators (FSfs), the software modules that allow
your program to access files from many different me systems. For each FST, Part II lists the
application caUs it supports and documents any differences in call handling from the standard
descriptions in Part I.

Volume 2 describes the device interface, the low-level parts of GS/OS that interact with device
drivers to control hardware such as disk drives, communication ports, and the console.

• Part I of Volume 2 documents how your program can use GS/OS calls to access a wide variety of
devices, both block and character devices, and describes the principal device drivers that are
supplied with GS/OS.

• Part II of Volume 2 documents how device drivers interface with GSlOS, and shows you how to write
a GS/OS device driver.

The principal descriptions of aU application-level GS/OS calls (other than device calls) are in Pan Iof
Volume 1. Call descriptions elsewhere in the.book consist mainly of differences from the standard
descriptions. The principal descriptions of application-level device calls are in Part I of Volume 2.
Driver calls (low-level device calls used by device drivers) are described in Part II of Volume 2.

If you are writing a typical application, the information in Volume 1 is probably all you will need. If
you need to access devices directly, or if you are writing a device driver, interrupt handler, message
handler, shell, or a large, segmented application, you will need Volume 2 also.

This manual does not explain 65C816 assembly language. Refer to the Apple IIGS Programmer's
Workshop Assembler Reference or the MPW IIGS Assembler Referenoe for information on Apple IIGS
assembly language programming.

This manual does not give a detaiJed description of ProDOS 8, the operating system for standard
Apple II computers (Apple II Plus, Apple lIe, Apple lIc). For detailed information on ProDOS 8, see
the ProDOS 8 Technical Reference Manual.

What it contains

GS/OS is described in two volumes. Here is a brief list of the contenlS of each chapter and appendix
in Volume 1:

Preface 3

GYOS ReferenCii (Volume 1) Draft 3 (APDA)

Volume 1. The Operating System: What your applications can do with GS/OS.

Introduction. What Is GS/OS? An overview of GS/OS.

Part L The Application Level: The uppennost level of GS/OS.
Chapter 1. Applications and GSI~ A brief overview.
Chapter 2. GS/OS and Its Environment: How GS/OS affects your program.

Chapter 3. Making GS/OS calls: The basics of making calls.
Chapter 4. Accessing GSlOS Files: Accessing block files and character files.
Chapter S. Working with Volumes and Pathnames: Bypassing files; formatting.
Chapter 6. Working with System Information: Communicating with system software.
Chapter 7. GS/OS Call Reference: Documentation of all application-level standard GS/OS

calls.

Part U. The Flle System Level: The middle level of GS/OS.
Chapter 8. File System Translators: How the FST concept works.

Chapter 9. The ProDOS FST: Details about accessing ProDOS fUes
Chapter 10. The High Sierra FS1': Details about accessing fUes on CD-ROM.
Chapter 11 •. The Character FST: Details about accessing character devices as fUes.

Appendixes
Appendix A. GS/OS ProDOS 16 calls: Making ProDOS 16 calls under GS/OS.

Appendix B. ProDOS 16 calls and FSTs: How each FST handles ProDOS 16 calls
Appendix C. The GS/OS Exerciser: How to practice GS/OS calls.
Appendix D. GS/OS System Disks and Startup: The major components of a system disk.
Appendix E. Apple Extensions to ISO 9660: Additions to the CD-ROM fUe format.
Appendix F. GS/OS Error COOcs and Constants: A complete listing and description.

Here is a brief list of the general contents of Volume 2:

Volume 2. The Device Interface: How GS/OS provides access to devices.

The Device I.evelln GS/OS An overview of the lower level of GS/OS.

Part L Using Device Drivers: How to make calls to GS/OS drivers.

Part U. Writing a DevIce Driver: How to write a device driver for GS/OS.

Appendixes: Device driver sample code, description of the System Loader.

4 GS/OS Reference

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

Other materials you'll need

In order to write Apple IIGS programs that run under GS/OS, you'll need an Apple IIGS computer and
development-environment software. Furthermore, you will need at least some of the reference
materials listed later in the Preface under, 'Roadmap to the Apple IIGS Technical Manuals: In
panicular, if you intend to write desktop-style applications or desk accessories, which make use of
the Apple IIGS Toolbox, you will need the Apple nGS Too~ Reference.

The GS/OS Exerciser, described in Appendix C of Volume 1, can be useful for practicing GS/OS calls.

Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, to the introduction
of a new term or to especially important information.

When a new term is introduced, it is printed in boldface the fllSt time it is used. This lets you know
that the term has not been defmed earlier and that there is an entry for it in the glossary.

Special messages of note are marked as follows:

Note: Text set off in this manner-with the word Note- presents extra information or points
to remember.

fmportant Text set off in this manner-with the word lmportanl-presents vital information or
instructions.

Terminology

This manual may define certain terms, such as Apple nand ProDOS, slightly differently than what you
are used to. Please note:

8/31/88

Apple II: A general reference to the Apple II family of computer;, especially those that may use
ProDOS 8 or ProDOS 16 as an operating system. It includes the 64 KB Apple II Plus, the Apple IIc, the
Apple lIe, and the Apple IIGs.

standard Apple II: Any Apple II romputer that is not an Apple IIGs. Since previous members of the
Apple II family share many characteristics, it is useful to clistinguish them as a group from the Apple
IIGS. A standard Apple II may also be called an 8-bit Apple II, because of the 8-bit registers in its
6502 or 65C02 microprocessor.

Preface 5

GS/OS Referrmce (Volume 1) Dmf/3 (APDA) 8/31/88

ProDOS: A general term describing the family of operating systems developed for Apple II
computers. It includes both ProDOS 8 and ProDOS 16; it does not include DOS 3.3 or 50S. ProDOS
is also a file system developed to operate with the ProDOS operating systems.

ProDOS 8: The 8-bit ProDOS operating system, through ver.;ion 1.2, originally developed for
standard Apple II computers but compatible with the Apple IIes. In previous Apple II
documentation, ProDOS 8 is called simply ProDOS.

ProDOS 16: The fust 16-bit operating system developed for the Apple IIes computer. ProDOS 16 is
based on ProDOS 8.

GS/OS: A nativNode, 16-bit operating system developed for the Apple lIes computer. GS/OS
replaces ProDOS 16 as the preferred Apple lies operating system GS/OS is the syslem described in
this manual.

Language notation

This manual uses certain conventions in common with Apple IIes language manuals. Words and
symbols that are computer code appear in a !OOnospace font:

_CaIIName_Cl parmblock :Name of call
bca error ;handle error if carry set o~ return

error : code to handle error return

parmblock :parameter block

This includes assembly language labels, enuy points, and file names that appear in text passages.
GS/OS call names and the names of other system software functions, however, are printed in normal
font in uppercase and lowercase letters (for example, GetEnuy and LoadSegmentNum). The subclass
of GS/OS calls thaI are compatible with ProDOS 16 are printed in all uppercase letters and of len
include underscore characters (for example, GET_ENTRY).

Roadmap to the Apple IIGS technical manuals

The Apple IIes personal computer has many advanced features, making it more complex than earlier
models of the Apple II computer. To describe the Apple IIeS fully, Apple has produced a suite of
technical manuals. Depending on the way you intend to use the Apple IIes, you may need to refer to a
select few of the manuals, or you may need to refer to mosl of them.

6 GS/OS Reference

GSla\' Reference (Volume 1) Draf/3 (APDA)

The Apple IIGS technical manuals document Apple IIGS hardware, Apple lIGS system software, and
two development environments for writing Apple IIGS programs. Figure P-I is a diagram showing the
relationships among the principal manuals; Table P-I is a complete list of all manuals. Individual
descripions of the manuals foUow.

Introductory Apple fiGS manuals

The introductory Apple IIGS manuals are for developers, computer enthUSiasts, and other Apple IIGS
owners who need basic technical information. Their purpose is to help the technical reader
understand the features and programming techniques that make the Apple lIGS different from other
computers.

8/31/ 88

• The Technical Introduction: The Technical Introduction 10 the Apple IIGS is the first book in the
suite of technical manuals about the Apple IIGS. It describes all aspects of the Apple IIGS, including
its features and general design, the program environments, the toolbox, and the development
environment

You should read the TechnialiIntroduction no matter what kind of programming you intend to do,
because it will help you understand the powers and limitations of the machine.

• The Programmer's Introduction: When you start writing programs that use the Apple IIGS user
interface (with windows, menus, and the mouse), the Programmer's InJroIiuClion to the Apple IIcs
provides the concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple lIGS.

The Programmer's Introduction gives an overview of the routines in the Apple IIGS Toolbox and the
operating environment they run under. It includes a sample event-<lriven program that demonstrates
how a program uses the toolbox and the operating system

Preface 7

GSIOS Reference (Volume 1) Draft 3 (APDA)

Figure pol. Roadmap to Apple IIGS technical manuals

To $WI finding <lUI

aboJt the Apple nos

To ie2m how __ _
the Apple IIGS wades

To ie2lll Apple lle!
prognmming

To lbe "",Ibox

Towri", Applellos __ _
programs wilb APW

To writ< Apple llos
Progrllll! wi1h the ---f
~meol
sysI<m

8 GSiOS Reference

8/31/88

GSiOS Reference (Yolume 1)

Table P-I Apple IIGS technical manuals

Title

Technical Introduction to the Apple IIGS
Apple IIGS Hardware Reference
Apple TIGS Firmware Reference
Programmer's Introduction to the Apple TIGS
Apple IIGS Toolbox Reference, Volume 1
Apple IIGS Toolbox Reference, Volume 2
ProOOS 8 Technical Reference Manual
Apple TIGS ProOOS 16 Reference

Apple TIGS Programmer's Workshop Reference
APW Assembler Reference
APW C Reference

MPW IIGS Tools Reference
MPW TIGS Assembler Reference
MPW TIGS C Reference
MPW IIGS Pascal Reference

Apple IIGS Debugger Reference

Draft 3 (APDA)

Subject

What the Apple IIGS is
Machine internals-hardware
Machine internals-fmnware
Concepts and a sample program
How tools work, some specifications
More toolbox specifications
Standard Apple II operating system
Apple IIGS operating system and loader

UsingAPW
Using the APW Assembler
Using the APW C Compiler

Using the cross-<levelopment system
Using the MPW IIGS Assembler
Using the MPW IIGS C Compiler
Using the MPW IIGS Pascal Ccmpiler

Debugger for all Apple IIGS programs

Apple fiGS machine-reference manuals

The machine ilself has two reference manuals. They contain detailed specifications for people who
want to know exactly wha(s inside the machine.

8/31/88

• The hardware reference: The Apple nGS Hardware Reference is required reading for hardware
developers and anyone else who wants to know how the machine works. Information for developers
includes the mechanical and electrical specifications of all connectors, both internal and external.
Information of general interest includes descriptions of the internal hardware and how it affects the
machine's features. .

Preface 9

G£'OS Refemra (Volume 1) Draft 3 (APDA) 8/31/88

• The flrmware reference: The Apple JIGS Firmware Reference describes the programs and subroutines
s(Qred in the machine's read-only memory (ROM). The FirmwaTf! Reference includes information
about interrupt routines and low-level VO subroutines for the serial ports, the disk port, and for the
Apple Desktop Bus'" interface, which controls the keyboard and the mouse. The Firmware Reference
also describes the Monitor program, a low-level programming and debugging aid for assembly
language programs.

Apple fiGS Toolbox manuals

like the Macintosh, the Apple IIGS has a built-in toolbox. The Apple IIGS Toolbox Reference, Volume I,
introduces concepts and terminology and tells how to use some of the tools. The Apple IIGS Toolbox
Reference, Volume 2, contains information about the rest of the tools. Volume 2 also tells how to
write and instaU your own tool set.

If you are developing an application that uses the desktop Interface, or if you want to use the Super
Hi-Res graphics display, you'll fmd the toolbox manual indispensable.

Apple fiGS operating-system manuals

The Apple IIGS two preferred operating systems: GS/OS and ProDOS 8. GS/OS uses the full power of
the Apple IIGS and can access files in multiple me systems. The GS/OS Reference describes GS/OS and
includes information about the System Loader, which works closely with GS/OS to load programs
into memory.

ProOOS 8, previously called simply ProDOS, is the standard operating system for most Apple II
computers with ~it CPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8 only if
you are developing programs to run on S-bit Apple II computers as well as on the Apple IIGS. ProDOS
8 is described in the ProDOS 8 Technical Reference Manual.

Note: GS/OS is compatible with and replaces ProOOS 16, the fIrst operating system developed
for the Apple IIGS computer. ProOOS 16 is described in the Apple fiGS ProDOS 16
Reference.

10 GSiOS Reference

GSiOS Reference (Volume 1) Drafl3 (APDA)

All-Apple manuals

Two manuals apply to all Apple computers: Human Interface Guidelines: The Apple Desktop Interface
and the Apple Numerics Manual. If you develop programs for any Apple computer, you should know
about these manuals.

The Human Interface Guidelines manual describes Apple's standards for the desktop interface to any
program that runs on an Apple computer. If you are writing a commercial application for the
Apple lIOS, you should be fully familiar with the contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numerics Environment (SAL\j'E), a
full implementation of the IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std 754-1985).
If your application requires accurate or robust arithmetic, you'll probably want it to use the SANE
routines in the Apple lIGS.

The APW manuals

Apple provides two development environments for writing Apple nGS programs. See Figure P-l. One
is the Apple lIOS Programmer's Workshop (APW). APW is a native Apple lIos development system
itruns on the Apple IIGS and produces Apple nGS programs. There are three principal APW manuals:

8/31/88

• The Programmer's Workshop manual: The Apple IfGS Programmer's Workslwp Reference
describes the APW Shell, Editor, linker, and utility programs; these are the parts of the workshop
that all developers need, regardless of which programming language they use. The APW reference
manual includes a sample program and describes object module format (OMF), the file format used
by all APW compilers to produce fLIes loadable by the Apple nGS System Loader.

• Assembler: The Apple nGS Programmer's Workshop Assembler Reference includes the specifications
of the 65816 language and of the Apple nGS libraries, and describes how to use the assembler.

• C compiler: The Apple IIGS Programmer's Workshop C Reference includes the specifications of the
APW C irnplemenraionand of the Apple IIGS interface libraries, and describes how to use the
compiler.

Other compilers can be used with the workshop, provided they follow the standards defined in the
Apple IfGS Programmer's Workshop Reference. Several such compilers, for languages such as Pascal, are
now available.

Note: The APW manuals are available through the Apple Programmer's and Developer's
Association (APDA).

Preface 11

GYOS Reference (Volume 1) Draft 3 (APDA)

The MPW IIGS manuals

Macintosh Programme(s Workshop CMPW) is one of the two development environments Apple
provides for writing Apple IIGS programs. See Figure P-l. MPW is principally a sophisticated,
powerful development environment for the Macintosh computer. It includes assemblers and
compilers, linkers, and a variety of diagnostic and debugging tools. When used to write Apple IIGS
programs, MPW is a cross-<levelopment system-it runs on the Macintosh, but produces executable
programs for the Apple IIGS.

MPW is documented in several manuals, but the parts needed for cross-deve1opment-the editor and
the build tools-are described in the Macintosh Programmer's Workshop Reference. That book is the
only Macintosh manual you need when writing programs using MPW IIGS.

Four manuals describe the cross-deve1opment system. Each programming language has its own
manual. Whichever language you program in, you also need the MPW IIGS Tools Reference.

8/31/88

• Tools: The MPW IIGS Tools Referrmce describes the tools needed to create Apple IIGS appplications
under MPW. It describes the linker, file-conversion tool, and several other conversion and diagnostic
programs.

• Assembler: The MPW IIGS Assembler Referrmcedescribes how to write Apple IIGS assembly-language
programs under MPW. It also documents a utility program that converts source files written for the
APW assembler to fLIes conipatible with the MPW IIGS Assembler.

• C compner: The MPW IIGS C Reference describes how to write Apple IIGS programs in C under MPW.

Note: The MPW IIGS manuals are available through the Apple Programme(s and Develope(s
Association CAPO A).

The debugger manual

Neither MPW IIGS nor APW includes a debugger as part of the development environment. However,
the Apple IIGS Debugger, an independent product, is a machine-language debugger that runs on the
Apple IIGS and can be used to debug programs produced by either MPW IIGS or APW.

The Apple IIGS Debugger is described in the Apple IIGS Debugger Reference.

12 GSiOS Reference

GSiOS Reference (Volume 1) Draft 3 (APDA)

Introduction What is GS/OS?

GS/OS is the fIrst completely new operating system designed for the Apple IIgs
computer. It is similar in interface and call style to the ProOOS operating
systems, but it has far greater capabilities because it has many new calls, and it
has much faster execution because it is written entirely in 65816 assembly
language.

Even more importan~ GS/OS is file-system independent: by making GS/OS
calls, your application can read and write fIles transparently among many
different and normally incompatible me systems. GS/OS accomplishes this by
defining a generic GS/OS file interface, the abstract file system. Your
application makes calls to that interface, and then GS/OS uses me system
translators to convert the calls and data into formats consistent with individual
me systems.

This chapter gives an overview of the structure and capabilities of GS/OS,
followed by a brief history of the evolution in Apple II operating systems from
005 to GS/OS. .

Introduction: What is GS/OS' 13

8/31/88

GSfOS Referena (VoIu"", 1) Draft 3 (APDA)

The components of GS/OS

GS/OS is more complex and integrated than previous Apple II operating systems. ~ Figure 1 shows,
you can think of it in terms of three levels of intenace: the application leve~ the file system level, and
the device level. A typical GS/OS call passes through the three levels in order, from the application at
the top to the device hardware at the bottom.

Figure 1-1 Interface levels in GS/OS

Applic3lion progr>m

8/31/88

Applic:llion
level

14 GSiOS Reference

File sys[em
leyel

Device
level

GSfOS Reference (Voiume 1) Draft 3 (APDA) 8/31/88

• Application level: Applications interact with GS/OS mostly at the application level. The
application level processes GS/OS calls that allow an application to access fUes or devices, or to get
or set specific system information.

In handling a typical GS/OS caU, the application level mediates becween an individual application
and the fIle system level. The application level is described in Part I of this volume.

• Fne system level: The fIle system level consists of file system translators (FSTs), which rake
application calls, convert them to a specific file system formal, and send them on to device drivers.
FSTs allow applications to use the same caUs to read and write files for any number of file systems.
FSTs also allow applications to access character devices (like display screens or printers) as if they
were files.

Note that the file system level is completely internal to GS/OS. Although your applications don't
interact with the file system level directly, you may want to know how calls are translated by different
fIle system translators. For example, CD-ROM files are read-only, so write calls cannot be translated
meaningfully by an FST that accesses files on compact discs.

In handling a typical GS/OS call, the file system level mediates becween the application level and the
device level. The me system level is described in Part II of this volume.

• Device levcI: The device level conununicates with all device drivers connected to the system. In
handling a typical GSiOS caU, the device level mediates between the me system level and an
individual device driver.

The device level of GS/OS has cwo other typeS of communication. At the highest level, applications
can bypass the file system level entirely by making device calls, which are calls that directly access
devices. At the lowest level, device drivers communicate with the device level by accepting driver
calls, which are IIXlstly low-level translations of device calls.

Device caUs are described in Part I of Volume II; if your application needs direct access to devices,
look there to fmd out how to do it Driver calls are described in Part II of Volume II; if you are
writing a device driver, look there for derails.

Another part of system software that is described in this manual is the Apple IIGS System Loader.
The System Loader loads all other programs into melIXlry and prepares them for execution. Although
. not strictly part of GS/OS, the System Loader occupies the same disk file as GS/OS, and works very
closely with GS/OS when loading programs. The System Loader and its caUs are documented in
Volume 2. For IIXlst applications, however, its functioning is totally automatic; only specialized
programs such as shells need make loader caUs.

Introduction: What is GS/OS? 15

GS'OS Reference (Volume 1) Dmf/ 3 (APDA)

GS/ OS Features

This section describes some of the principal GS/OS features of interest to application writers.

File-system independence

Because it uses file system translators, GS/OS accesses non-ProDOS file systems as easily as it
accesses the more familiar (to Apple II applications) ProOOS files. It is possible to gain access to
any ftle system for which an FST has been written. Several FSTs currently exist; as Apple Computer
creates new FSTs, they can be very easily added to existing systems.

The GS/OS abstract file system supports both flat and hierarchical ftle systems and systems with
specific file typeS and access permissions. GS/OS recognizes standard files, directory files, and
extended files (two-fork fIles such as the Macintosh uses). Certain GS/OS calls make it easy to retrieve
and use directory information for any file system

The abstract file system is described in Chapter 1 of this volume. FSTs are described in Part II of this
volume.

Enhanced device support

All GS/OS device drivers provide a uniform interface to character and block devices. GS/OS
supports both ROM-based and RAM-based device drivers, making it easier to integrate new
peripheral devices into GS/OS.

GS/OS provides a uniform input/output model for both block and character devices. Devices such as
printers and the console are accessed in the same way as sequential ftles on block devices. This can
greatly simplify VO for your application.

Unlike ProOOS 8 and ProOOS 16, GS/OS recognizes disk-switched and duplicate-volume situations,
to help your application avoid writing dara to the wrong disk.

Devices are normally accessed through application-level fIle calls, described in Part 1 of this volume.
Device drivers are described in Part II of Volume 2.

16 GSiOS Reference

8/31/88

GSiOS Reference (Volume 1) Dmf/ 3 (APDA)

Speed enhancements

GS/OS uansfers data much faster than ProDOS 8 or ProDOS 16 becall'ie it uses disk caching, allows
multiple-block reads and writes, eliminates the duplicate levels of buffering used by ProDOS 16, and
because it is written entirely in 65816 native-mode assembly language.

Disk caching is described in Volume 2.

Eliminated ProDOS restrictions

GS/OS allows any number of open ftles (rather than only 8) up to the amount of available RAM, any
number of devices on line (rather than only 14), and any number of devices per slot (rather than only
2). GS/OS allows volumes and ftles to be as large as 231 bytes (rather than only 16 MB for files and 32
MB for volumes).

The GS/OS ftle interface is described in Chapter 1 of this volume.

ProDOS 16 compatibility

GSiOS includes a complete set of ProDOS 16 calls and implements them just as ProDOS 16 does. All
well-behaved ProDOS 16 applications can run without modification under GS/OS. An added benefit
is that existing ProDOS 16 applications running under GS/OS can now automatically access files on
non-ProDOS disks, and can also access character devices as ftles.

Where to fmd call descriptions

As already noted, there are several categories of calls that programs can make to GS/OS. Broadly,
calls can be divided imo application-level calls (made from application programs 10 GS/OS) and
low-level calls (made between GS/OS and low-level software such as device drivers). Mosl
application-level calls are described in Volume 1; JOOSt low-level calls are described in Volume 2.
Within these broad divisions, there are several subcategories of calls and call-related descriptions;
each subcategory is described in a different place in the two volumes. The categories are as follows:

In Volume 1:

Introduction: What is GSfOS' 17

8/31/88

GS'OS Reference (Volume 1) Draft 3 (APDA)

• standard GS/OS calls: Also called class 1 calls or just Gstos calls, these are the primary calls an
application makes to access files or system information. They are application-level calls. This
category covers all operating system calls that a typical GS/OS application makes.

8/31/88

o FSf-specillc information on GS/OS calls: Because different file systems have different
characteristics, not all respond identically to GSiOS calls. In addition, each FST can support the
GSiOS call FSfSpecillc, an application-level call whose function is defmed individually for each FST.
Therefore, this book includes descriptions of how each FST handles certain GS/OS calls, including
FSTSpecific.

o ProDOS16 calls: Also called class 0 calls, these are application-level calls that are identical to the
calls described in the Apple figs hoDOS 16 Reference. GS/OS supports these calls so that exis ting
ProDOS 16 applications can run without modillcation under GS/OS.

o FSf-specillc information on ProDOS 16 calls: Because different file systems have different
characteristics, not all respond identically to ProDOS 16 calls. Therefore this book includes
descriptions of how each FST handles ProDOS 16 calls. There is no FSTSpecific ProDOS 16 call as
there is for GSiOS calls.

In Volume 2:

o . GS/OS device calls: These are a subset of the application-level; standaId GS/OS calls described in
Volume 1, but they are special because they bypass the file level altogether and access devices
directly.

o Driver-specillc Information on GS/OS device calls: Because different devices have different
characteristics, not all device drivers respond identically to GS/OS calls. Therefore, this book
includes descriptions of how each GSiOS driver handles certain GS/OS device calls.

o Driver calls: These are calls that GS/OS makes to individual device drivers. They are low-level calls,
of interest mainly to device-driver writers.

o System service calls: System service calls give low-level components of GS/OS (such as FSTs and
device drivers) a uniform method for accessing system information and executing standard routines .
This book describes the system service calls that GS/OS device drivers can make.

o System Loader calls: These are calls a program can make to load other programs or program
segments into memory Although the typical application makes no System Loader calls, they are
described in this book so that shells and system-level programs can make use of them.

Figure 1-2 shows you where to look in each volume for the principal descriptions of each call
category. For example, the descriptions of all standard GS/OS calls (except those that access
devices) are in Pan I of Volume 1 (Chapter 7}, the descriptions of driver calls are in Pan II of Volume
2 (Chapter 9).

18 GSiOS Reference

". _.

GSIOS Re/emJCI! (Volume 1) Draft 3 (APDA)

Note: Figure 1-2 is reproduced in each Part opening in this book, highlighted in each case to
show the calls described in that part.

FI~ 1·2 Where to find call descriptions in this book.

Most applications make only the calls described in Part la/Volume 1 (shaded area).

P:utI

Volume I

!'>It I

GS/OS device caIb

Volume 2 ------Driver -<pecific
information 011·

GS/OS doviao caIb

p:utn

FST -opecific
information on

GS/OsCllI,
(OupterHl)

!'>Itll

Driver ails

----.
System seMce caIb

GS/OS system requirements

ProOOS 16 e>II,
(!.ppendix A)

FST"peciJic
infonmtionon

ProOOS 16 e>II,
(!.ppendix B)

Appendixes

SySiem IDodet CIl~
(!.ppendix B)

GSIOS will not run on a standard Apple II computer. It requires an Apple IIGS with a ROM revision of
1.0 or greater, at least 512 KB of RAM, and a disk drive with at least 800 KB capadty. A second 800
KB drive or a hard disk is strongly recommended.

Introduction: What is GS/OS? 19

8/3 1/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

Background to the development of GS/OS

To swrunarize this overview of GSlOS, this chapter ends with a brief discussion of how GS/OS
evolved from previous Apple II operating systems.

Apple has created several operating systems for the Apple II family of computers. GS/OS is the latest
in that line; it is related to several earlier systems, but has far greater capabilities than any of them.
Here are thumbnail sketches of the other systems:

8/31/88

• DOS: OOS (for Disk Operating System) was Apple's flJ'St operating system. It provided the Apple
computer with its flJ'St capability to store and retrieve disk files. DOS has relatively slow data
transfer rates by modem standards, supports a flat (rather than hierarchical) me system, can read 140
KB disks only, has no uniform interrupt suppon, includes no memory management, and is not
extensible.

• Pascal: Apple II Pascal is an Apple implementation and enhancement of the University of California,
San Diego Pascal System. Its lineage is completely separate from the other Apple operating systems.
Apple II Pascal supports only a flat me system, is characterized by slow, interpretive execution,
provides no uniform suppon for interrupts, has no memory management, and is difficult to extend.

• sos: sas (for Sophisticated Operating System) was developed for the Apple Ill, but its most
imponant feature, the me system, is the hean of the ProOOS family of operating systems (described
next). SOS gives much faster data transfer than OOS, represents Apple's flJ'St hierarchical file system,
supports block devices up to 32 Mb, provides a uniform sequentialI/O model for both block devices
and character devices, and includes interrupt handling, memory management, device handling, and
extensibility via device drivers and interrupt handlers. The major deficiency of SOS (for standard
Apple II computers) is that it requires at least 256 Kb RAM for effective operation.

• ProDOS 8: ProOOS 8 (originally called ProOOS, for Professional Disk Operating System), brought
some of the advanced features of 50S to 8-bit Apple II computers (Apple II Plus, Apple lIe, Apple
IIc). [t requires no more than 64 Kb of RAM, and in fact can directly access only 64K of memory
space. ProDOS supports exactly the same hierarchical file system as 50S, but does not have the
uniform I/O model for character devices and files, memory management, or uniform treatment of
device drivers and interrupt handlers.

• ProDOS 16: ProOOS 16 (ProOOS for the 16-bit Apple liGS) is the first step toward an operating
system designed specifically for the Apple lIGS computer. It is an extension of ProDOS B-although
there are a few imponant additions, it has essentially the same features as ProDOS 8 and supports
exactly the same hierarchical me system. ProOOS 16's main advantage is that it allows applications
to interact with the operating system from anywhere in the 16 Mb Apple lIGS address space.

3) GSlOS Reference

"---...

'--'.

GSiOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

• GS/OS: GS/OS fully exploits the capabilities of the Apple lIGS. It is a fas~ modular, and extensible
operating system that provides a file-system-independent and device-independent environment for
applications. While upwardly compatible from ProDOS 16, it corrects deficiencies in Pro DOS 16's
VO perfonnance and eliminates its restrictions on number and size of open files, volumes, and
devices. GS/OS supports character devices as files, it handles devices uniformly, and it supports
RAM-based device drivers. GS/OS can create, read and write ftles among a potentially unlimited
number of different me systems (including ProDOS).

Although it is an extension of the ProDOS lineage, GSIOS is really a completely new operating system.
AI; its name suggests, it is designed specifically for the Apple IlGS computer, and it is intended to be
the principal Apple IlGS operating system

Introduction: What is GS/OS' 21

GSiOS Reference (Volume 1) Draft 3 (APDAl

Part I The Application Level

Part I

Volume!

Part I

GSIOS device all,

VoIumeZ -----on"".,pedfic
infOlTJ1aliln on

GSfOS device aiLs

Part il

FST -specific
inf()(JJll[too on

GSlOsolls
(o..pter ~11)

Partil

Driver calls

Sy""" service ails

Appendixes

ProllOS 16caU,
(Appendix A)

FST',pedfic
information on
ProDOS 16 call,
(Appendix B)

Appendixes

System Loader ails
(Appendix B)

8/31/ 88

GYOS RejerenCl! (Volume 1) Draft 3 (APDA) 8/31/88

2A Volume 1: Applications and GSiOS Part 1: The Application Level

GSiOS ReferenC2 (Voium2 1) Draft 3 (APDA)

Chapter 1 The GS/OS Abstract File System

Two key features of GS/OS are its ability to insulate applications from the
details of (1) the hardware devices connected to the system, and (2) the file
systems used to store applications and their data. This chapter shows how
GS/OS implements these features. It also lists, by category, the GS/OS calls that
an application can make.

Chapter 1: The GS/OS Abstract File System 2S

8/3 1/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

A high-level interface

GS/OS has been designed to insulate you, as the application programmer, from the details of the
system Nonnally, you simply make a GS/OS call, and GS/OS routes the call to the correct device.
Conceptually, you can think of GS/OS as looking like the illustration shown in Figure 1-1 .

FIgure 1-1 Application level in GS/OS

Application progr.tm

8/31/88

ApplicaLion
level

ProOOS
Fsr

High
Siern Fsr

Device Dispatcher

Blodr. Block Chancter
device device device
driver driver driver

Block Block Owocter
device device device

26 Volume 1: Applications and GSiOS

Ch=c!er
PST

Other Fsr

Ch2!'1Cter
device
driver

Chmcter
device

Part I: The Application Level

"- . -

•

G.Y'OS Ke/erl!nCe (Volume 1) Draft 3 (APDA)

GS/OS can keep your application from dealing with FSTs and devices at all, and thus allow you to
take a higher-level approach, by supporting files in a hierarchical file system.

In a hierarchical file system, some files, called directory files, can contain the names of either files
or other directories. Those directories can in tum contain the names of files or other directories.
Figure 1-2 shows the relationships among fIles in a hierarchical fIle system.

Figure 1-2 Example of a hierarchical file structure

Volu""
directory

In GS/OS, the root-level directory is called a volume directory. A volume is a logical entity that
allows you to access the fIles contained on a physical storage medium Only block devices can be
identified by volume name, and then only if the named volume is mounted. For example, an entire
disk is identified by its volume name, which is the filename of its volume directory.

GS/OS also makes certain assumptions about what each file in this hierarchical file system looks like.
The assumptions are as follows:

• that each file can be classified as a directory, standard, or extended file

• that each me has a name in a certain format

8/31/88

• that the logical location of each me can uniquely identified by a pathname, which is a collection of
the flIenames that lead to it

Chapter 1: The GS/OS Abstract File System 'll

GYOS Reference (Volume 1) Draft 3 (APDA)

• that each file has access privileges

• that each fue has a filetype and an auxiliary file type

• that each me has a creation and modification date and time

The following sections define these assumptions.

Classes of GS/OS fdes

Every GS/OS file is a collection of bytes on a device.

The three classes of ftIes are as follows:

• directory mes, which store information about other files

• standard mes, which are a collection of a single sequence of data

• extended mes, which are a collection of two sequences of data

Note These classes of ftIes are for block devices. GS/OS also allows you to treat character
devices as if they contained files. See Chapter 11 'The Character FST' for more
information.

Dltectory mes
A directory me contains informational entries about other directories and files. Each entry in the
directory file describes and points to anodler directory file, standard file, or extended file, as shown
in Figure 1-3.

/8 Volume 1: Applications and GSIOS Part I: The Application Level

8/31/88

GS'OS Reference (Volume 1) Draft 3 (APDA)

Figure 1-3 Directory file format

DIr<dory file Stwlanl file

Fileenlly
(file,\)

Pileenuy
(file B)

-~.-I Pile A I
~ <-1 __ (d>ta_F_ile_f!r_kl_--,

PUe enlly
(me 0

Mc:e entries

File enIrf
(filen)

_____ ~ FileS
(re50urce fork)

File n

Directory fties can be read from, but not written to (except by GS/OS).

Dir<ctory file (C)

FiJeeruy
(file X)

Filt entty
(Jllc Y)

A directory can, but need not, have associated file information such as access controls, file type,
creation and modification times and dates, and so on.

You usually only need to examine directory files when you are creating catalog-type applications;
more information about directory fties is given in the section. 'Examining Directory Entries" in
Chapter 4.

Standard files

Standard flIes are named collections of data consisting of a sequence of bytes and associated file
information such as access controls, file type, creation and modification times and dates, and so on.
They can be read from and written to, and have no predefllled intemal format, because the
arrangement of the data depends on the specific file type.

Chapter 1: The GS/OS Abstract File System 'E

8/31/88

Draft 3 (APDA)

Extended flIes

Extended rues are named collections of data consisting of two sequences of bytes and a single set
of file infonnation such as access controls, file type, creation and modification times and dates, and
so on. The two different byte sequences of an extended file are called the data fork and the resource
fork. They can be read from and written to, and GS/OS makes no assumptions about their internal
formats; the fonnats depend on the specific file types.

Filenames

Every GS/OS file is identified by a filename. A GS/OS filename can be any number of characters long,
and can include spaces as part of the filename. Your application must encode filenames as sequences
of 8-bit ASCII codes.

All 256 extended ASCII values are legal except the colon (ASCII $3A), although most ftle system
translators (FSrs) support IInlch smaller legal character sets.

Important . Because the colon is the pathname separ.l!or character, it must never appear in a
ftlename. See the next section for more details about st;parators and pathnames.

If an FSr does not support a character that the user attempts to use in a filename, GS/OS returns error
$4() (pathname syntax error). FSTs are also responsible for indicating whether filenames should be
case-sensitive or not, and whether the high-<>rder bit of each character is turned off. See Pan II of
this volume for more infonnation about FSrs.

A ftlename must be unique within its directory. Some examples of legal filenames are as follows:

file-l

January Sales

long file name with spaces and spec ial characters !@JS %

3l Volu~ 1: Applic3lions and GSiOS Pan I: The Application Level

8/31/88

GS/OS Reference (Volume 1) Drojl 3 (APDA)

Pathnames

In a hierarchical file system, a file is identified by its pathname, a sequence of file names starting
with the name of the volume directory name and ending with the narre of the me. These pathnames
specify the access paths to devices, volumes, directories, subdirectories, and files within flat or
hierarchical file systems.

8131188

A GSIOS pathname is either a full pathname or a pamal pathname, as described in the fo~owing sections .

Full pathnames

A full pathname is one of the following names:

• a volume name followed by a series of zero or more filenames, each preceded by the same separator,
and ending with the name of a directory fIle, standard fIle , or extended file

• a device name followed by a series of zero or more fIlenames, each preceded by the same separator,
and ending with the name of a directory me, standard file, or extended file

A separator is a character that separates filenames in a pathname. Both of the following separators
are valid:

• A colon ":' (ASCII code $3A).

• A slash character" r (ASCn code $2F)

The first colon or slash in the input string determines the separator. When the colon is the separator, the
constituent filenames must not contain colons, but can contain slashes. When the slash is the separator,
the constituent filenames must not contain slashes or colons. Thus, colons are never allowed in filenames.

Examples of legal full pathnames are as follows:

laloysius/beelzebub/eat

:a:b:e

Ix

:x

.dl/a/b

Examples of illegal full pathnames are as follows:

I:: :/: :/:

la/h/e

a ",. must not appear in a filename

assuming that the first filename is supposed to be "alb'

Chapter 1: The GSIOS Abstract File System 31

CS/OS Reference (Volume I)

/a/b/e/

a/b/e/

DrrifI3 (APDA)

cannot have a separator after the last filename

must start with a volume or device name

All calls that require you to name a me will accept either a full pathname or a partial path name.

Prefixes and partlal patboames

8/31/ 88

A full pathname can be broken down into a prefix and a partial pathname. In essence, the prefix starts at
the beginning of the pathname (that is, at the volume or device name) and can continue down through the
last directory name in the path. In contrast, the partial pathname starts at the end of the pathname and
can continue up to, but not include, the volume name or device name. Thus, when the prefix and partial
pathname are combined, they yield the full pathname. Figure 1-4 illustrates the possible prefix and partial
pathname portions of a single full pathname.

Figure 1-4 Prefixes and partial pathnames

iZ!i!l Prefix
I mM PWIl po!Iuwne

PrefIXes are convenient when you want to access many fues in the same subdirectory, because you
can use a prefix designator as a substitute for the prefIX, thus shortening the pathname references.

Prefix designators

A prefix designator takes the place of a prefIX, and can be

• A digit or sequence of digits followed by a pathname separator. The digits specify the prefix number.
Thus, the prefix designatolS '002:" and '2/" both specify prefIX number 2.

• The asterisk character (.) followed by a pathname separator. This special prefIX designator specifies
the volume from which GS/OS was last booted.

• Nothing. This is identical to prefIX 0 (that is, equal to '0:" or "00000/").

3Z Volume 1: Applications and GSiOS Part I: The Application Level

.---.-....

G!'IOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

If you supply a partial patlmame that doesn't contain a prefix designator to GS/OS, GS/OS automatically
creates the full pathname by adding the preftx designator 01 in front of the partial pathname. GS/OS
detennines the separator for a partial pathname in the same way that it determines the separator for a full
pathname.

Note: Although you may use a prefIX designator as an input to the GS/OS SetPreftx call,
prefIXes are always stored in memory in their full pathname form (that is, they include no
prefIX designator.; themselves).

GS/OS supports two types of prefIxes, as follows:

• Short prefixes, referred to by the prefIX designator.; '0' and '0' through "7," cannot be longer than 63
character.;. Short prefIXes are identical to the prefIXes supported by ProDOS 16.

• Long prefixes, referred to by the prefIX designator.; '8" through '31," can contain up to about 8,000
characters .

. This means that GS/OS allows you to set 32 prefixes. You set and read prefIxes using the standard
GS/OS calls SetPreflX and GetPreflX. GetPreflX rerurns a string in which all separator.; are colons
(ASCll $3A) and alphabetic character.; have the same case in which they were entered by way of a
SetPreflX call.

Predefined prefl:IC designators

For programming convenience, some prefix designator.; have predefl11ed values. One has a fIXed
value, and the other.; have default values assigned by GS/OS at application launch (see Tables 2-4
through 2.{i in Chapter 2). The most important predefIned prefIX designator.; are as follows:

°1 the boot preflX-it is the name of the volume from which the presently running GS/OS was booted.

01 the default prefIX (automatically attached to any partial pathname that has no prefIX number}-it
has a value dependent on how the current program was launched. In some cases it is equal to the boot
prefix.

II the application prefIX-it is the full pathnarne of the subdirectory that contains the currently running
application.

21 the system run-time library prefIX-it is the pathname of the subdirectory (on the boot volume) that
contains the run-time library fIles used by applications. Run-time libraries are described in Volume 2.

Your application can assign the rest of the prefIXes. In fact, once your application is running, it can
also change the value of any prefIX (including 01, II, or 2/) except prefIX °1.

Chapter 1: The GS/OS Abstract File System 33

Gsros Reference (Volume 1) Drajl3 (APDA)

Table 1-1 shows some examples of prefIx use. They assume that prefix 01 is set to /vOLUMEll and
prefIx 51 is set to /VOLUMElIfEXT.FILES/. The pathname provided by the application is compared
with the full pathname constructed by GS/OS.

Table 1-1 Examples of prefIX use

• Full pathname provided:

as supplied: /VOLUMEl/fEXT.FILES/CHAP.3
as expanded by GS/OS: /VOLUMElIfEXT.FILES/CHAP.3

• Partial pathname-implicit use of prefIx 10:

as supplied: GS.OS
as expanded by GS/OS: IVOLUME1IGS.OS

• Explicit use of prefIX 10:

as supplied: O/SYSTEM/FINDER
as expanded by GS/OS: /VOLUMEl/SYSTEMIFlNDER

• Use of prefix 51:
as supplied: 5/CHAP.12
as expanded by GS/OS: /VOLUMEl/fEXT.FILES/CHAP.l2

File information

GS/OS mes are marked as having several characteristics, including those that follow:

• Access permissions to the me

• File type and auxiliary type of the me

• The size of the fIle and the current reading-writing position in the fIle

• Creation and modification date and time

YQUl' application can access and modify this information, as introduced in the following sections and
described IOOre completely in Chapter 4, • Accessing GS/OS Files:

;I Volume 1: Applications and GSiOS Part I: The Application Level

8/31188

--

GY'OS Reference (Volume 1) Draft 3 (APDA)

File access

The ch:uacteristic of file access determines what operations can be perfonned on the file. Several
GS/OS calls read or set the access attribute for the flIe, which can determine the following
capabilities:

• whether the file can be destroyed

• whether !he flIe can be renamed

• whether the flIe is invisible; that is, whether its name is displayed by file-otaloging applications

• whether the file needs to be backed up

• whether an application can write to the file

• whether an application can read from the me

File types and auxiliary types

The file type and auxiliary type of a ftle do not affect !he contents of a file in any way, but do
indicate to GS/OS and other applications the type of information stored in the file . Apple Computer
reserves the right to assign file type and auxiliary type combinations, except for the user-defined file

" ~ .' types $Fl through $F8.

Important: If you need a new me type or auxiliary type asSignment, please contact Apple Developer
Technical Support.

Table 1-2 shows the valid table typeS. In Table 1-2, the descriptions under the Auxiliary type column
have the following meanings:

• Application specifIC means that the auxiliary type specifies which application created the file

• Way the = is SJared means the auxiliary type differentiates between various storage methods

• Upper!lower case in filename rreans that AppleWorks uses 15 bits of the auxiliary type word (it's a
word on disk, instead of a long word, for the ProDOS file system) to flag whether to display that
letter of the ftlename in lowercase

8/31/88

• Not loaded if bit 15 is set means that GS/OS won't load or execute fties like DAs and Setup files if bit 15
of the auxiliary type is set

• APW language type is !he language designation for APW source flies

• Load adt.iTr!ss in bank/or BASIC.SYSmMis the default load address for ProDOS 8 executable binary
ftles (ftle type $06)

Chapter 1: The GS/OS Abstract File System 35

G!YOS Reference (Volume 1) Dmjt 3 (APDA) 8/31/88

• Random-access record lenglh specifies the record length for an ASCII text file (file type $04)

Table 1-2 GS/OS me types and auxiliary types

me
IXpe DqqIt?don NJ!nt2 ry type

$00 Uncateg0ci2ed me
$01 Bad blocks me
104 ASCD text me Random-access record-length (O- Sequentia! mel
Wi Binary me wad address in bank for BASIG.SYSTEM
$(lI Double Hi-Res me
$OF Directory me
$19 AppleWorlcs da!abase me Upper/lower case in me name
$1A AppleWorlcs word processor me Upper/lower case in me name
$IB AppieWorks spreadsheet file Upper/lower ca5e in me name
$50 Word processor me Application specific
$51 Spreadsheet fIle Application SpecifIC
$52 Dalabase me Application SpecifIC
$53 Obje:1-oriented grnphics me Application SpeciflC
$54 Desktop publishing me Application SpeciflC
$55 Hypermedia me Application specific
$56 Educalional da!a file Application specifIC
$57 SIalionery me Application specific
$58 Help me Application specific
$59 Communications me Application specifIC
$5A Application configuration me Application specific
$AB GS BASIC program me
$AC GS BASIC Toolbox definition me
$AD GS BASIC data me
$80 APW source me APW Language type
$Bl APW object file
$82 APW library me
$B3 GSlOS application
$84 GSiOS RwHime library me
$B5 GSiOS Shell application file
$B6 GSiOS pennanent inilialization me No! loaded if high b~ set
$B7 Apple DGS temporuy inilialization me NO! loaded if high bit set
$B8 New Desk Acr:essoty NO! loaded if high b~ set
$89 CIas<: Desk Accessay No! loaded if high bit set
$BA Tool file
$BB Apple DGS devk:e driver file No! loaded if bit 15 set
$OC Generic load me

" Volume I: Applications and GSiOS Part I: The Application Levd

GSIOS Reference (Volume 1)

SSO
SSP
$CO

SCI
SC8
$0)

$CA
$05
SD6
S07
$EO
SE2
$EP
$FO
SFI
SP2
SF3
$F4
$F5
$F6
$F7
$FS
$F9
$FA
$FB
$FC
$FO
$FE
IFP

GSiOS fIle system translaIor
Apple UGS sowx! fIle
Apple UGS Super Hi-Res screen image
Apple UGS Super Hi-Res pCture fIle
Apple UGS fonI fIle
Apple UGS Pinder dara me
Apple IIGS Pinder icon file
Music ~e file
InsuumenI fIle
MIDI me
Telecommunications library fIle
AppleTalk FUe
P3$al area on partitioned disk
BASIC.SYSTEM Command Pile
Uset-<lel"lIled me type #1
Uset-{fdined file type #2
Uset-defmed fIle type #3
Uset-defmedfIle type #4
Uset-defllled fIle type #5
Uset-defmed file type #6
Uset-defmed fIle type #7
Uset-defmed ftle type #8
GSlOS System ftle
In!eget BASIC program fIle
Integer BASIC variable me
AppleSofi BASIC program fIle .
AppleSofi BASIC variable file
EDASM relocatable coo.: fIle
ProDOS 8 application

EOF and mark

Draft 3 (APDA)

Not loaded if bit 15 sel

Way the image is stored
Way the pi:ture is stored

Application-specific
Application-specifIC

Application-specific

To aid reading from and writing to files, each open standard file and each fork of an open extended
file has a byte count indicating the size of the ftle in bytes (EOF), and another defining the current
position in the file (the mark). GS/OS moves both EOF and mark automatically when data is added
to the end of the ftle, but an application program must move them whenever data is deleted or added
somewhere else in the file.

EOF is the number of readable bytes in the ftle.Since the first byte in a ftle has number 0, EOF
indicates one position past the last character in the ftle,

Chapter I: The GS/ OS Abstract File System ')1

8/31/88

GS'OS Re/erenc£ (Volume 1) Dmfl3 (APDA)

When a file is opened, the mark is set to indicale the first byte in the file. It is automatically moved
forward one byte for each bylf written to or read from the file. The mark, then, always indicates the
next bylf to be read from the file, or the next bylf position in which to write new data. It cannot
exceed EOF.

If the mark meets EOF during a Mile operation, both the mark and EOF are moved forward one
position for every additional byte written to the file. Thus, adding byteS to the end of the file
automatically advances EOF to accommodate the new information. Figure 1-5 illustrates the
relationship between the mark and EOF.

Figure 1-5 Automatic movement of EOF and mark

EOF

~1/---tIZC-...-.f.IZ=---. -+(-1 +-(-+-(-fl~~
MAlIK

Alta' writing or te:ldlng two byI<s EOF

/zzzz
I I I I I

An application can place EOF anywhere, from the current mark position to the maximum possible
bylf position. The mark can be placed anywhere from the fll'St bylf in the file to EOF. These two
functions can be accomplished using the SetEOF and Seunark calls. The current values of EOF and
the mark can be determined using the GetEOF and Getmark calls.

}! Volume 1: AppIicitions and GSiOS Part I: The Application Level

8/31/88

- ,

---"

. "--"

GYOS Reference (Volume 1) Dm/l3 (APDA) 8/31/ 88

Creation and modification date and time

All GS/OS mes are marked with the date and time of their creation. When a me is first created,
GSIOS stamps the file's directory entry with the current date and time from the system clock. If the
me is later modified, GS/OS then stamps it with a modification date and time (its creation date and
time remain unchanged).

The creation and modification fields in a me entry refer to the contents of the me. The values in
these fields should be changed only if the contenlS of the file change. Since data in the file's directory
entry itself are not part of the file's contents, the modification field should not be updated when
another field in the me entry is changed, unless that change is due to an alteration in the me's
contents. For example, a change in the me's name is not a modification; on the other hand, a change
in the fIle's EOF always reflects a change in its contents and therefore is a modification.

Remember also that a me's entry is a part of the contents of the directory or subdirectory that
contains that entry. Thus, whenever a file entry is changed in any way (whether or not its
modification field is changed), the modification fields in the entries for all its enclOSing
subdirectories-inc1uding the volume directory-must be updated.

F'maUy, when a file is copied, a utility program must be sure to give the copy the same creation and
modification date and time as the original file, and not the date and time at which the copy was
created.

Character devices as files

AI; part of its unifonn interface, GS/OS pennits appUcations to access character devices , like block
devices, through file calls. An extension to the GS/OS abstract file system lets you make standard
GS/OS calls to read to and write from character devices. This faciUty can be a convenience for VO
redirection .

. When character devices are treated as fIles; only certain fearures are available. You can read from a
character device but you cannot, for example, format it. Only the following GS/OS call.s have
meaning whan applied to character devices: Open, Newline, Read Write, Close, and Flush (see brief
descriptions of these calls later in this chapter)

In genera1, character 'meso under GS/OS are much more restricted in scope than block files:

• There are no extended or directory files. Character devices are accessed as if they were standard
fiJes--singie sequences of bytes. And, unlike with block files, it is not possible to obtain or change
the current position (mark) in the sequence.

• Character devices are not hierarchical. The only legal pathname for a character "file" is a device name.

Chapter 1: The GS/OS Abstract File System :J)

GSfOS Reference (Volume 1) Draf/3 (APDA)

• Character devices may recognize some file-access attributes (read-enable, write-enable), but not
others (rename-enable, invisibility, destroy-enable, backup-needed).

• Character 'files" have no me type, auxiliary type, EOF, creation time, or other information
associated with block-me directory entries.

In spite of these restrictions, it is generally quite simple and straightforward to treat character
devices as files. For more information on file-access [0 character devices, see Chapter 11, "The
Character FST".

Groups of GS/OS calls

Chapters 4 through 6 list and describe the GS/OS operating system routines that are normally called by
an application. They are divided into the following categories:

• File access call.s (described in Chapter 4)

• Volume and pathname calls (described in Chapter 5)

• System information calls (described in Chapter 6)

In addition to these groups of caUs, the Quit call is used when an application quits, and is described
in Chapter 2.

Finally, GS/OS provides calls that directly access devices and install interrupt and signal handlers. For
more detail on those calls, refer to Volume 2. Table 1-31is15 the groups of GS/OS calls.

4J volume 1: Applications and GSiOS Part I: The Application Level

8131188

GYOS Reference (Volume 1) Dmft 3 (APDA)

Table 1-3 GS/OS call groups

volume and patbmmr pUa Sntgn lnfpnnatfoo calls Device calls
Q-eare ($2001)
Destroy ($2002)
Se!F~e1nfo ($2005)
GetFllelnfo ($2006)
GetF'delnfo ($2006)
OearBackup ($200B)
Open (SWIO)
Newline ($2011)
Rtro ($2012)
Write ($2013)
Oa;e(SWI4)

flush ($2015)
SetMark ($2016)
GetMark ($2017)
SeIEof ($2018)
Ge!Eol ($2019)
Se!Levd ($20IA)
G(1Level($20IB)
GetDirEnlry ($201C)
BeginSessiJn ($2010)
EndSessiJn ($20IE)
SessionSlatus ($20iF)
ResetCache ($2026)

OlangePath ($2004)
Volume ($2008)
SetPrefix ($2009)
GeIPrefix ($200A)
~($200E)

Format ($2024)
EraseDisk ($2025)
GetBootVoi ($2028)

Se!SysPrefs ($200C)
GetSysPrefs ($200F)
GetName ($2027)
GetVersion ($202A)
GetFSTInfo (S202B)

DCootroi ($202E)
DInfo (S202C)
DRead ($202F)
DSl3tus ($202D)
DWr~e ($2030)

1he foUowing sections give you an overview of the capabilities of the calls in these groups. Each call
is discussed in much greater detail in Chapter 7 of this volume.

File access calls

1he most common use of GS/OS is to make calls that access files. Your application places a file on
disk by issuing a GS/OS Create caU. This call specifies the file's pathname and storage type (standard
me, extended me, or directory) and possibly other information about the state of the file, such as
access attributes, me type, creation and modification dates and times, and so on.

Your program must make the GS/OS Open call in order to access a file's contents. For an extended ·
file, individual Open caUs are required for the data fork and resource fork, which are then read and
written independently. When your application opens a file, the application must establish the access
privileges.

Chapter I: The GS/OS Abstract file System 41

8/31/88

G!'IOS Reference (Volume 1) Dmft 3 (APDA)

A me can be simultaneously opened any number of times with read access. However, a single open
with write access precludes any other opens on the given fIle.

While a file is open, your application can perform any of the following tasks:

• Read data from the file by using the Read call, or write data to the file by using the Write call

• Set or get the the Mark by using the SetMark and GetMark ca1Is, and set or get the end of the file by
using the SetEOF and GetEOF

• Enable or disable newline rrode by using the Newline can

• If the open file is a directory file, get the entries held in the file by using the GetDirEntry call

8/31/88

• Write changes to the disk for one or more open files by using the Flush, GetFilel.evel, and SetFilel.evel
ca1Is

When you are through working with an open me, you issue a GS/OS Close call to close the file and
release any memory that it was using back to the Memory Manager.

After the file has been closed, you can use other GS/OS calls to work with it One of these calls,
ClearBackup, clears a bit so that the file appears to GS/OS as if it does not need backing up; another
GS/OS call, Destroy, can be used to delete a me. Other GS/OS calls that wo~k on closed ftles are
described in Chapter 5 ..

Two other GS/OS calls, SetFileInfo and GetFileinfo, anow you to access the information in the file's
directory entry. These calls are particularly useful when you are copying files because the calls allow
you to change the creation and modification dates for a file.

A final group of GSiOS calls-BeginSession, EndSession, and SessionStatus-are useful when you
want your appllcation to defer disk writes.

The background infonnalion on the file access calls is described in Chapters 1 and 4, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

Volume and patbname calls

GSiOS provides a whole set of calls to deal with those situations where you want to work directly
with volumes and pathnames. These ca1Is allow you to do the follOwing tasks:

• get information about a currently mounted volume by using the Volume call

• build a list of all mounted volumes by using the mnfo, Volume, Open, and GetDirEntry calls

• get the name of the current boot volume by using the GetBootVol call

42 Volume 1: Applications and GSiOS Part I: The Application Level

'-...-"

GYOS Re!erenat (Vo/ume 1) Dmfl3 (APDA)

• physically format a volume by using the Format call

• quickly empty a volume by using the EraseDisk call

• set or get pathname prefIXes by using the SetPrefIX and GetPrefIX calls

• change the pathname of a me by using the Change Path call

• expand a partial pathname of a file to its full pathname by using the ExpandPath call

The background information on the volume and pathname calls is described in Chapter 5, and each
individual call is listed alphabetically by name and described in derail in Chapter 7.

System information calls

The system information calls allow you to do the following tasks:

• set or get system preferences by using the SelSysPrefs and GetSysPrefs caUs, which allow you to
customize some GS/OS fearures

• get information about a specified FST by using the GetFSTInfo call

• fmd out the version of the operating system by using the GetVersion call

• get the filename of the currently executing application by using the GetName call

The background information on the system information calls is described in Chapter 6, and each
individual caU is listed alphabetically by name and described in derail in Chapter 7.

Device calls

GSIOS offers a set of calls that aUow you to access devices directly, rather than going through any file
system. Most applications will not need to use any of these calls, except perhaps DInfo (that use is
described in Chapter 5). The GS/OS device calls allow you to perform the following tasks :

• get general information about a device by using the DInfo caU

• read information directly from a device by using the DRead call

• write information directly to a device by using the DWrite call

• get status information about a device by using the DStatus call

• send commands to a device by using the DContrnl call

A brief sununary of the individual calls is listed alphabetically by name in Chapter 7, and information
device calls are completely described in Volume 2.

OIapter 1: The GS/OS Abstract File System 43

8/31/88

G£'OS Re/erena (Volume J) Draft 3 (APDA) 8/31/88

44 Volume 1: Applic3lions and GSIOS Part I: The Application Level

GSiOS Reference (Volume 1) Draft 3 (APDA)

Chapter 2 GS/OS and Its Environment

GSiOS is one of the many components that make up the Apple IIGS operating
environmen~ the overall hardware and software setting within which Apple IIGS
application programs run. This chapter describes how GS/OS functions in [hat
environment and how it relates to the other components.

Chapter 2: GSiOS and its Environment 45

8/31/88

GSIOS ReferenCl! (Volume 1) Draft 3 (APDA)

Apple fiGS memory

The Apple IIGS microprocessor can directly address 16 megabytes (16 MB) of memory. The minimum
memory configuration for GS/OS on the Apple IIGS is 512 kilobytes (512 KB) of RAM and 128 KB of
ROM. As shown in Figure 2-1, the total memory space is divided into 256 banks of 64 KB each.

Figure 2-1 Apple IIGS memory map

Bank Number.
(

SFFFF

SDOOO .
$OXXl

S9AOO

\

$00 $01 $02 $03

E%p2Insion RAM

I
RAM

.. GS/OS and Sysu.m Leader

""""",,! Other ed memory

I

S7F $EO $EI

c::::::J Memory ,nibble to the applialiat

S2000

SfO SFI

I
ROM

,
$FD SFE SFF

GS/OS and the System Loader together occupy nearly all addresses from $DOOl through $FFFF in
banks $00, $01, SEQ, and SEl. In addition, GSiOS reserves (through the Memory Manager)
approximately 9.5 KB just below $COOl in bank $00 for GS/OS system code and data. None of these
reserved memory areas is available for use by applications.

Banks $EQ and SE1 are used principally for high-resolution video display, additional system software,
and RAM-based tools. Specialized areas of RAM in these banks include 110 space, bank-switched
memory, and display buffers in locations consistent with standard Apple II memory configurations.

Other reserved memory includes the ROM space in banks SFE and SFF; they contain finnware and
ROM-based tools. In addition, banks SFO through $FD are reserved for future ROM expansion.

46 Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

GSiOS Referena (Volume 1) Draft 3 (APDA)

Memory allocatable to applications through the Memory Manager is in bank $00, at locations S0800-
$9AOO, bank $01 at $08OO-$COOO, and banks $02-$7F at locations $OOOO-$FFFF Call 64 KB) in each
bank.

For example, a 1 MB Apple IIGS Memory Expansion Card makes available 16 additional banks of
memory numbered $02 to $11.

Under most circumstances, you should simply request memory from the Memory Manager and not use
fued locations. The only fIXed locations you need to use are listed in the next sections.

For more detailed picrures of Apple IIGS memory, see the Technical InlroducliOn 10 lhe Apple l!GS, the
Apple IIGS HardwaTf! RefeTf!nce, and the Apple DGS FirmwaTf! Reference.

Entry points and flXed locations

Because most Apple IIGS memory blocks are movable and under the conuol of the Memory Manager
(see the next section), there are very few fued entry points available to applications programmers.
References to fIXed entry points in RAM are strongly discouraged, since they are inconsistent with
flexible memory management and are sure to cause compatibility problems in furure versions of the
Apple IIGS. Informational system calls and referenCing by handles (see' Accessing a Movable Memory

.Block" in this chapter) should take the place of access to fued entry points.

The supported GS/OS entry points are $El00A8 and El00BO. These locations are the entry points for
all GSiOS calls. The Tool Locator entry point is $E10000, which is the entry point for all Apple JIGS
tool calls, including the System Loader (described in Chapter 2).

Nole: How to use the entry points to make GS/OS calls is described in Chapter 3, 'Making
GS/OS Calls."

The GS/OS entry points, and the other fIXed locations in bank $El that GS/OS supports, are shown in
Table 2-1.

Chapter 2: GSiOS and ilS Environment /[!

8/3 1/88

GS'OS Referena (Volume 1) Draft 3 (APDA)

Table 2-1 GS/OS vector space

Address

$El0000

$El00A8 - $El00AB

$El00AC - $El00AF

$El00BO - $El00B3

$El00B4 - $El00B9

$El00BA - $El00BB

$EI00BC

Description

Entry vector for all Apple lIGS tool calls.

Entry vector for inline GSiOS system calls

Reserved for internal use

Entry vector for stack-based GS/OS system calls

Reserved for internal use

Two null bytes (guaranteed to be zeros)

OSJGND byte-indicates currently running operating system, as
follows:

$00 - ProDOS 8

$01- GSiOS

8/3 1/88

$El00BD

$FF - none; operating system is being loaded or switched

OS_BOOT byte-indicates the operating system that was initially
booted, as follows:

$00 - ProDOS 8

$01- GSiOS

$El00BE - $El00BP $0000 - GS/OS is not busy

$8OO()..GS/OS is busy processing a system call

Managing application memory

The Memory Manager, a ROM-resident Apple lIGS tool set, controls the allocation, dealJocation, and
repositioning of memory blocks in the Apple lIGs. It works closely with GS/OS and the System
Loader to provide the needed memory spaces for loading programs and data and for providing
buffers for input/output. All Apple IIGS software, including the System Loader and GS/OS, must
obtain needed memory space by making requests (calls) to the Memory Manager.

48 Volume 1: Applications and GS/OS Part I: The Application Level

GSiOS Refereroa (Volume 1) Draf/3 (APDA)

The Memory Manager keeps track of how much memory is free and what parts are allocated to whom.
Memory is allocated in blocks of arbitrary length; each block possesses several attributes that
describe how the Memory Manager can modify it (such as moving it or deleting it), and how it must
be placed in memory (for example, at a fIXed address). See the chapter on the Memory Manager in
the Apple IIGS Toolbox Reference for more information.

Besides creating and deleting memory blocks, the Memory Manager moves blocks when necessary to
consolidate free memory. When it compacts memory in this way, it of course can move only those
blocks that needn't be fIXed in location. Therefore, as many memory blocks as possible should be
movable (not fIXed), if the Memory Manager is to be efficient .in compaction.

When a memory block is no longer needed, the Memory Manager either purges it (deletes its contents
but maintains its existence) or disposes of it (completely removes it from memory).

Obtaining application memory

Normal memory allocation and deallocation is completely automatic, as far as applications are
concemed. When an application makes a GS/OS call that requires allocation of memory (such as
opening a me or writing from a HIe to a memory location), GS/OS first obtains any needed memory
blocks from the Memory Manager and then performs its tasks. Conversely, when an application
informs the operating system that it no longer needs memory, that information is passed on to the
Memory Manager, which in rum frees that application's allocated memory.

Any other memory that an application needs for its own purposes must be requested directly from
the Memory Manager. Figure 2-1 shows which partS of the Apple llGS memory applications can
allocate through requests to the Memory Manager. Applications for Apple llGS should avoid
requesting absolute (fixed-address) blocks. See also the Programmer's Introduction to the Apple IIGS
and the Apple IIGS Toolbox Reference.

Accessing data in a movable memory block

To access data in a movable block, an application cannot use a simple pointer because the Memory
Manager may move the block and change the data's address. Instead, each time the Memory Manager
allocates a memory block, it returns to the requesting application a handle referencing that block.

Chapter 2: GS/OS and ilS Environment 49

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

A handle is a pointer to a pointer, it is the address of a fixed (nonmovable) location, called the
master pointer, that contains the address of the block. If the Memory Manager changes the location
of the block, it updates the address in the master pointer; the value of the handle itself is not
changed Thus the application can continue to access the block using the handle, no matter how
often the block is moved in memory. Figure 2-2 illustrates the difference between a pointer and a
handle.

If a block will always be fIXed in memory (locked or unmovable), it can be referenced by a pointer
instead of by its handle. To obtain a pointer to a particular block or location, an application can
dereference the block's handle. The application reads the address stored in the location pointed to
by the handle-that address is the pointer to the block. Of course, if the block is ever moved, thaI
pointer is no longer valid.

GS/OS and the System Loader use both pointers and handles to reference memory locations.
Pointers and handles must be at least three bytes long to access the full range of Apple IIGS memory.
However, all pointers and handles used as parameters by GSiOS are four bytes long, for ease of
manipulation in the 16-bit registers of the 65C816 microprocessor.

~ VauRlC 1: Applica1ions and GSiOS Part I: The Application Level

8/31/88

GS/OS Reference (Volume 1)

FIgure 2-2 Pointers and handles

a. Pointer:

Value of pointer·
-8 addres3 of memory block

Draft 3 (APDA)

sxxx ----------~.~sxxx

bllandle

Value ofha.dIe·
addJes& of IIWIer pointer

$ZZZ

r sxxx
:

~ I Master Pointer

-----------.~$ZZZ~--------~
Value of master pointer •

current Sl2Iting address of
memory block

Allocating stack and direct page

In the Apple IIGS, the 65C816 microprocessor's stack-pointer register is 16 bits wide; that means that,
in theory, the hardware stack can be located anywhere in bank $00 of memory, and the stack can be
as much as 64 KB deep.

The d1rect page is the Apple IIGS equivalent to the standard Apple II zero page. The difference is
that it need not be absolute page zero in memory. like the stack, the direct page can theoretically
be placed in any unused area of bank $OO-the microprocessor's direct register is 16 bits wide, and all
zero-page (direct-page) addresses are added as offsets to the contents of that register.

Chapter 2: GS/OS and its Environment 51

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

In practice, however, there are several, restrictions on available space. First, only the addresses
between $8()() and $COOO in bank S()() can be allocated-the rest is reserved for 1/0 space and system
software. Also, because more than one program can be active at a time, there may be more than one
stack and more than one direct page in bank $()(). Furthermore, many applications may want to have
palTS of their code as well as their stacks and direct pages in bank $00.

Your program should, therefore, be as efftcient as possible in its use of stack and direct-page space.
The total size of both should probably not exceed about 4 KB in most cases.

Automatic allocation of stack and direct page

Only you can decide how much stack and direct-page space your program will need when it is running.
The best time to make that decision is during program developmen~ when you create your source
files. If you specify at that time the total amount of space needed, GS/OS and the System Loader
will automatically allocate it and set the stack and direct register.; each time your program runs.

Definition during program development

You defme your program's stack and direct-page needs by specifying a 'direct-jiage/stack" object
segment (KlND • $12) when you assemble or compile your program. The size of the segment is the
total amount of stack and direct-page space your program needs. It is not necessary to create this
segment; if you need no such space or if the GS/OS default (see the section "GS/OS Default Stack
and Direct Page" later in this chapter) is sufficient, you may leave it out

When the program is linked, it is important that the direct-page/stack segment not be combined
with any other object segments to make a load segment-.,-the linker must create a single load segment
corresponding to the direct-page/stack object segment If there is no direct-page/stack object
segment, the linker will not create a corresponding load segment

Allocation at load time

Each time the program is started, the System wader looks for a direct-page/stack load segment. If
it fmds one, the loader calls the Memory Manager to allocate a page-aligned, locked memory block of
that size in bank $00. The loader loads the segment and passes its base address and size, along with
the program's user ill and starting address, to GS/OS. GS/OS sets the accumulator (A), direct (D),
and stack pointer (S) register.; as shown, then passes control to the program:

52 Volume 1: Applications and GSiOS Part I: The Application Level

8/3 1/88

GYQS Reference (Volume 1) Draft 3 (APDA)

A = user ID assigned to the program
D - address of the first (lowest-address) byte in the direct-page/stack space
S - address of the last (highest-address) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated space, and the
stack grows downward from the top of the space.

Important: GSiOS provides no mechanism for detecting Stack overflow or underflow, or collision of
the stack with the direct page. Your program must be carefully designed and tested ro
make sure this cannot occur.

When your program terminates with a Quit call, the System Loader's Application Shutdown function
makes the direct-page/stack segment purgeable, along with the program's other static segments. As
long as that segment is not subsequently purged, its contents are preserved until the program restarts.

Note: There is no provision for extending or moving the direct-page/stack space after its
initial allocation. Because bank $00 is so heavily used, any additional space you later
request may be unavailable-the memory adjoining your stack is likely to be occupied
by a locked memory block. Make sure that the amount of space you specify at link time
fills all your program's needs.

GS/OS default stack and direct page

If the loader finds no direct-page/stack segment in a me at load time, it still returns the program's
user ID and starting address to GS/OS. However, it does not call the Memory Manager to allocate a
direct-page/stack space, and it retums zeros as the base address and size of the space. GS/OS then
calls the Memory Manager itself, and allocates a 4 KB direct-page/staCk segment.

See the Apple IlGS Toolbox Reference for a general description of memory block attributes assigned by
the Memory Manager.

GS/OS sets the A, D, and S register:; before handing control to the program, as follows:

A - User ID assigned to the program
D - address of the fust (lowest-address) byte in the direct-page/stack space
S - address of the last (highest-address) byte in the direct-page/stack space

When your application terminates with a Quit call, GS/OS disposes of the direct page/stack
segment

Chapter 2: GS/OS and its Env~onment 53

8/31/88

GSiOS lIeference (Volume 1) Draft 3 (APDA)

System startup considerations

The startup sequence for the Apple IIGS is is invisible to applications and relatively complex, so
further discussion of the sequence is presented in Appendix D, 'GS/OS System Disks and Stanop."
That appendix describes the structure of a valid system disk.

The Apple fiGS startup sequence ends when control is passed to !he GS/OS program dispatcher. This
routine is entered both at boot time and whenever an application terminates with a GS/OS, ProDOS
16, or ProDOS 8 Quit cau. The GS/OS program dispatcher determines· which program is to be run next,
and runs it. After startup, the program dispatcher is permanently resident in memory.

Quitting and launching applications

When you want your application to qui~ you issue a GS/OS Quit call. The GS/OS program dispatcher
performs all necessary functions to shut down the current application, determines which appUcation
should be executed next, and then launches that application ..

When you issue the Quit cau, you can indicate to GS/OS whether your application can be restarted
from memory. You can also specify the next application to be launched, · and whether your
application should be placed on the quit return stack so that it will be restarted when the other .
program quits. The following sections further explain your options when qUitting.

Specifying whether an application can be restarted from memory

When your application sets the restart-from-memory flag in the Quit call 10 TRUE (bit 14 of the flags
word - 1), the application can be restarted from a dormant state in the computer's memory. If your
application sets the restart-from-memory flag to FALSE (bit 14 - 0), the program must be reloaded
from disk the next time it is run.

If you set the restart-from-memory flag to TRUE, remember that the next time the application is run,
its code and data will be exactly as they were when the application quit Thus, you may need to
reinitialize certain data locations.

54 Volume 1: Applic3tions and GS/OS Part I: The Application Level

8/3 1/88

-.

,.-" .

GSiOS Reference (Volume 1) Draft 3 (APDA)

Specifying the next application to launch

When you are quitting your application, and want to pass control to another application, you supply
the pathname of that application in the Quit call.

Note: GS/OS loads only programs that have a file type $B3, $B5, or $FF.

Specifying a GS/OS appllcation to launch

You should not specify a device name if you are specifying the pathname of a GS/OS application;
GS/OS returns a fatal error if the device does not contain a disk. The GS/OS program dispatcher does
not handle volume names or filenames longer than 32 characters.

Specifying a ProDOS 8 appllcation to launch

If you are quitting to a ProDOS 8 application, the pathname specified in the Quit call must be a legal
ProDOS 8 pathname. In particular, device names must not be used when specifying the pathname of
a ProDOS 8 application since ProDOS 8 will return a fatal error.

The GS/OS program dispatcher then takes the following steps:

1. ShulS down GSiOS and the System Loader.

2. Allocates all special memory for the application.

3. Loads and starts up ProDOS 8.

When the ProDOS 8 application quits, the next action depends on whether the ProDOS 8 application
uses a standard ProDOS 8 QUIT call, or an enhanced ProDOS 8 QUIT call, as follom:

8/31/88

• If the ProOOS 8 application executes a standard ProDOS 8 QUIT call, the GS/OS program dispatcher
restarts GS/OS and the System Loader and launches the next application on the quit rerum stack.

• If the ProOOS 8 application executes an enhanced ProDOS 8 QUIT call, which contains a pathname
to an application to be launched, control is passed to the specified application. The specified
application can be a ProOOS 8 application or a GS/OS application. If it is a GS/OS application, the
program dispatcher will restart GSiOS and the System Loader and then launch the application.

Olapler 2: GSiOS and its Environment 55

GSiOS Reference (Volume 1) Draft 3 (APDA)

Specifying whether control should retum to your application

The quit return stack is a stack of user IDs used to restart applications that have previously quit. If
an application specifies a TRUE quit return flag in its Quit caU, GS/OS pushes the user ID of the
quitting program onto the quit return stack and saves information needed to restart the program. A:,

subsequent programs run and quit, several user IDs may be pushed onto the stack. With this
mechanism, multiple levels of sheUs can execute subprogram; and subsheUs, while ensuring that they
eventually regain control when their subprograms quit

For example, the START me might pass control to a software development system shell , using the
Quit call to specify the pathna.me of the shell and placing its own ID on the stack. The sheU in turn
could hand control to a debugger, likewise placing its own ID on the stack. If the debugger quits
without specifying a pathname, control would pass automatically back to the shell; if the shell then
quits without specifying a pathname, control would pass automatically back to the START file.

This automatic return mechanism is specific to the GS/OS Quit call, and therefore is not available to
ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its ID on the internal stack.

Quitting without specifying the next application to launch

If you want to quit your application and do not want to specify the next application to be launched,
supply the following parameters in the Quit call:

• no pathname

• a FALSE quit return flag

GS/OS then attempts to pull a user ID off the Quit return stack and relaunch that application. If the
Quit return stack is empty, GS/OS will attempt to relaunch the START program.

uunching another application and not returning

When you are quitting your application, and want to pass control to another application, but do not
want control to eventually return to your application, supply the following parameters in the Quit call:

• pathna.me of the application to be launched

• a FALSE quit return flag

GS/OS will attempt to launch the specified application.

~ Volume 1: Applications and GSiOS Part I: The Application Level

8/3 1/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

Launching another application and returning

If you want to pass control to another application, and want control to return to your application
when the next application is finished, set the quit return flag to TRUE in the Quit call. That way your
program can function as a shell-whenever it quits to another specified program, it knows that i[will
eventually be reexecuted. Supply the follOwing parameters in the Quit call:

• pathname of the application to be launched

• a TRUE quit return flag

GS/OS pushes the User ID of your quitting application onto the quit return stack, and [hen attempts
to launch the specified application.

Machine state at application launch

The GS/OS program dispatcher initializes certain components of the Apple IIGS and GS/OS before it
passes control to an application. The initial state of those components is described in the following
sections.

Machine state at GS/OS application launch

When a GS/OS program is launched, the machine state is as shown in Table 2-2.

Table 2-2 Machine state at GS/OS application launch

Item State

8/3 1/88

Reserved memory Addresses above $9AOO in bank zero are reserved for GS/OS, and are
therefore unavailable [0 the application. A direct-page/stack space,
of a size determined either by GS/OS or by the application itself, is
reserved for the application; it is located in bank $00 at an address
determined by the Memory Manager. The only other space that
GS/OS requires in RAM is the language-cud areas in banks $00, $01,

Hardware registers

accumulator

$ED, and $Et. .

Contains the user ID assigned to the application.

Chapter 2: GS/ OS and its Environment 51

GS''OS Reference (Volume 1)

x- and Y-registers

eo, m-, and x-flags in the
processor status register

stack register

direct register

Standard input/output

Shadowing

Vector space values

Pathname prefIx values

58 VoIUITC 1: Applications and GS/OS

Dmf/3 (APDA) 8/31/88

Contain zero ($0000).

All set to zero; processor in full native mode.

Contains the address of the top of the direct-page/stack space.

Contains the address of the bottom of the direct-page/stack space.

For both $B3 and $B5 mes, standard input, output, and error
locations are set to Pascal 8().column character device vectors.

The value of the Shadow register is $lE, which means:

language card and JlO spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing OFF

Addresses between $OOAS and $OOBF in bank SEI constitute GS/OS
vector space. The specific values an application finds in the vector
space are shown in Table 2-1 earlier in this chapter.

Set as described in the section "Pathnarne Preflxes at GS/OS
Application uunch" later in this chapter.

Part I: The Application \.evel

GS/OS Reference (Volume 1) Draft 3 (APDA)

Machine state at ProDOS 8 application launch

When a ProDOS 8 program is launched, the machine state is as shown in Table 2-3.

Table 2·3 Machine state at GS/OS application launch

Item State

Reserved space All special memory is reserved for use by the program.

Hardware registers

A-, x- and Y-registers

e-flag in processor
status register

stack register

direct register

Shadowing

Pathname prefIX values

Undefined.

Set to one; processor is in emulation mode.

Set to $OlFB.

Undefined.

Shadow register is $08, which means:
language card and I/O spaces:
text pages:
graphics pages:

shadowing ON
shadowing ON
shadowing ON

Set as described in the section 'Pathname Prefixes at ProDOS 8
Application Launch" later in this chapter.

Pathname prefixes at GS/OS application launch

When a GS/OS application is launched, all 32 GS/OS prefIX nurnbets are assigned to specific
pathnames (some are meaningful pathnames, whereas others are null strings). Because an application
can change the assignment of any prefIX number except the boot prefIX ('I), and certain initial prefix
values might be left over from the previous application, beware of assuming a value for any panicular
prefIX.

Tables 2-4 through Hi show the initial values of the prefIX numbers that a GS/OS application receives,
under the three different launching conclitions possible on the Apple IIGS.

Note: In each of the follOwing cases, prefIX 1 and prefIX 9 are both set to the full pathname of
the clirectory containing the current application. If the string is greater than 64
characters long, prefix 1 is set to a null string and prefIX 9 contains the full string.

Chapter 2: GS/OS and its Environment <f)

8/3 1/88

GYOS Reference (Volume 1) Draft 3 (APDA)

At all times during execution, GetName returns the filename of the current application (regardless of
whether prefIX II has been changed), and GetBootVol returns the boot volume name, equal [0 the
value of prefix ' I (regardless of whether prefix 01 has been changed),

Table 2-4

Prefix ,
o
1
2
3-8
9
10-31

Table 2-S

Prefix ,
o
1
2
3-8
9
1()..31

Table 2-6

Prefix ,
o
1
2
3-8
9
1()..31

PrefIX values when GS/OS application launched at boot time

Description
boot volume name
boot volume name
full pathname of directory containing current application
'/SYSTEMIUBS
null string;
equal to prefIX 1
null string;

Prefix values--GS/OS application launched after GS/OS application quits

DescriptIon
unchanged from previous application
unchanged from previous application
full pathname of directory containing current application
unchanged from previous application
unchanged from previous application
equal to prefIX 1
unchanged from previolJs application

PrefIX values--GS/OS application launched after ProDOS 8 application quits

Description
boot volume name
unchanged from the ProDOS 8 system prefIX under previous application
full pathname of the directory containing the current application
'/SYSTEM/UBS
nuU string;
equal to prefix 1
null strings

(jJ Volwre 1: Applicalions and GS/OS Pan I: The Applicatiool.evel

8/31/88

GSiOS Re!emlt:e (Volume 1) Draft 3 (APDA)

Pathname prefIXes at ProDOS 8 application launch

Table 2-7 shows the initial values of the ProDOS 8 system prefIx and the pathname at location $0280
in bank $00 when a ProDOS 8 application is launched from GS/OS.

Table 2-7 PrefIX and pathname values at ProDOS 8 application launch

Condition

Application launched at boot
time

Application launched through
enhanced ProDOS 8 QUIT call

Application launched after a
GS/OS application has quit (if
Quit call specifIed a full
pathname)

Application launched after a
GS/OS application has quit (if
Quit call specified a prefIx and a
partial pathname)

System prefix

boot volume name

unchanged from
previous application

previous application's
prefix 0/

prefIX specified in the
Quit call

Location $0280 pathname

fIlename of current
application

full or partial pathname
given in QUIT caU

fuU pathname given in .
QUIT call

partial pathname given in
Quit call

Chapter 2: GS/OS and its Env~onrnent 61

8/31/88

GY'OS RefeTl!TlCl! (Volume 1) Draft 3 (APDA)

Chapter 3 Making GS/OS Calls

This chapter describes the methods your application must use to make GS/OS
calls. The current application, a desk accessory, and an interrupt handler are
examples of applicatioll5 that can make GS/OS calls.

OJapler 3: Making GSiOS Calls 63

8/31/88

GS'OS Reference (Volume 1) Draft 3 (APDA)

GS/OS call methods

When an application makes a GS/OS call, the processor can be in emulation mode or full native mode,
or any Stlte in between (see the Technical Inlrrxiuction to the Apple IIGS). There are no register
requirements on entry to GSIOS. GSIOS saves and restores all registers except the accumulator (A)
and the processor status register (P); these two registers store information on the success or failure of
the call.

Calling in a high-level language

To make a GSIOS call from a high-level language, such as C, you supply the name of the call and a
pointer to the parameter block.

Calling in assembly language

You can make GS/OS calls in assembly language using any of the following techniques:

8/31/88

• Macro technique-uses macros dermed by Apple to generate inline calls. Macro calls are the simplest
and the easiest to read.

• lnline call technique-similar to ProOOS 8

• Stack call technique-<onsistent with the way compilers generate code

There is virtually no difference in the run-time performance of these three techniques; essentially,
which one of the techniques you use is a matter of personal preference. Each of these techniques is
detailed separately in the following sections.

To make a GS/OS assembly language call, your application must provide

• a 2-byte call number or the macro name of the call

• If you don't use the macro name, a Jump to Subroutine Long (lSL) instruction to the appropriate
GSIOS entry point

• a 4-byte pointer to the parameter block for the call; the parameter block passes information between
the caller and the called function

The macro name or call number specifies the type of GS/OS call, as follows:

lit Volume 1: AppIicalioos and GSiOS Part I: The Application level

GSiOS Reference (Volume 1) Draft 3 (APDAJ 8/31/88

• Standard GS/OS calls: These calls allow you to access the full power of GS/OS; you should use them Ii
you are writing a new application. Most of the description in this manual is devoted solely to these
calls.

• ProDOS 16 calls: These calls, described in Appendix A of this document, are provided only for
compatibility with ProDOS 16. (ProDOS 16 is described in the Apple iiGS ProDGS 16 Reference.)

Every GS/OS call that doesn't use the macro technique must specify the system call number and class
in a par.uneter referred to in the next sections as callnum. The callnum parameter has the
following format:

115114113112111 110 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 II I 0 I
rr:served -2-~ , J '

cWoI-I
class 0 _ 0 oil number

The primary call numberis given in each call description. For example, the call number for the Open
call is $10.

Thus, to make a standard GS/OS (class 1) Open call, your application would use the macro name or a
callnum value of $2010; to make a ProDOS 16-compatible (class 0) OPEN call, the caller would use a
call num value of $0010.

Mak.i.og a GS/OS call using macros

To make a standard GS/OS call using the macro technique, perform the following steps:

1. Provide the name of the standard GS/OS call.

2. Follow the name with a pointer to the par.uneter block for the call.

GS/OS performs the function and retums control to the instruction that immediately follows the
macro.

The following code fragment illustrates a macro call:

_CaIIName_CI parmblock ;Name of call
bcs error ; handle error if carry set on ret urn

error :code to handle error return

parmblock ;parameter block

<llapler 3: Making GS/OS Calls 65

GSIOS Reference (Volume 1) Draft 3 (APDA)

Making an inllne GS/OS call

To make a standard GS/OS call using the inline method, perfonn the following steps:

1. Perfonn a lSi to $E1OOA8, the GS/OS inline entry point

2. Follow the lSi with the call number.

3. Follow the call number with a pointer to the parameter block.

GS/OS perfonns the function and returns control to the instruction that inunediately follows the
par.lmeter block pointer.

The following code fr.lgment illustr.ites an inline call:

inllne_entry gequ $EIOOAS iaddre ss ot GS / o s 1n11 n9 entry poi nt

error

parmbloek

Making a stack call

jsl
de

de
be.

lnline_entry
12 I callnum I
i4 ' parmblock'
error

:10n9 jump to GS/OS 1n11ne entry poin ~

:call number
; parameter block pointer
:handle error it carry set on return

:eode to handle error return

ipa r ameter block

To make a standard GS/OS call using the stack method, perform the following steps:

I. Push the parameter block pointer onto the stack (high-order word fllSt, low-order word second).

2. Push the call number of the call onto the stack.

3. Perform a lSi to $E1OOBO, the GS/OS stack entry point.

GS/OS perfonns the GS/OS conunand and returns control to the instruction that inunediately follows
the lSL

The following code fr.lgment illustrates a stack call:

error

parmblock

gequ

pea
pe a
pea
jsl
bes

$EIOOBO

parmbloekl-16
parmblock
callnum
stack_entry
error

(6 VoIuax: 1: Applications and GSiOS

; addres$ of GS /OS s t ack entry point

;push high word o f parameter block point e r
;push l ow word of paramet er block poi nter
iPush call number
;10n9 jump to GS/OS stack entry poi nt
i handle error if carry set on ret urn

icode to handle error ret urn

iparameter b l ock

Part I: The Application Level

8/31/88

,"-.

-. ... -"

GSIOS RejerenCIJ (Volume 1) Drajl3 (APDA)

Including the appropriate files

If you are writing your application in assembly language, include the following files, as appropriate:

E16.SYSCALLS and M16.SYSCALLS
E16.PROOOS and M16.PROOOS

If you are making standard GS/OS calls
If you are making ProOOS 16-<:ompatible calls

If you are writing your application in C, include one or both of the following files :

SYSCAllS.H
PRODOS.H

Important

If you are making standard GS/OS calls
If you are making ProOOS 16-<:ompatible calls

In either language, if you include fties to make both standard GS/OS and ProOOS 16-
compatible calls, you must append the suffix GS to the standard GS/OS call names and
parameter block type identifiers.

GS/OS parameter blocks

A GS/OS parameter block is a fonnatted table that occupies a set of contiguous bytes in memory.
The block consists of a number of fields that hold infonnation that the calling program supplies to
the function it calls, as well as infonnation rerumed by the function to the caller.

Every GSiOS call requires a valid parameter block (parmblock in the preceding examples),
referenced by a 4-byte pointer. The application is responsible for constructing the parameter block
for each call that it makes; the block can be anywhere in memory.

The formats of the fields for individual parameter blocks are presented in the detailed system call
descriptions in Chapter 7.

Types of parameters

Each field in a GS/OS parameter block contains a single parameter, one or more words in length. Each
parameter is an input from the application to GS/OS or a result that GS/OS returns to the application,
or both an input and a result

Chapter 3: Making GSiOS Calls 67

8/3 1/88

GYOS Rejererra (Volume 1) Draft 3 (APDA) 8/31/88

• An input can be either a numerical value or a pointer to a string or other data structure.

• A result is a numerical value that GSiOS places into the parameter block for the caller to use.

• A pointer is the 4-byte address of a location containing data, code, or buffer space in which GS/OS
can receive or place data; that is, the pointer may point to a location that contains an input, or point
to space that wiU receive a result, or point to a location that both contains an input and receives a
result

Parameter block format

All standard GSiOS par.llneter blocks begin with a parameter count, which is a word-length input
value that specifies the total number of parameters in the block. This aHows you to vary the number
of parameters in a call as needed, and also makes possible future parameter block expansion.

All parameter fields that contain block numbers, block counts, file offsets, byte counts, and other
file or volume dimensions are 4 bytes long. Using 4-byte fields ensures that GS/OS will accommodate
large devices using file system translators .

. All parameter fields conlain an even number of bytes, for ease of manipulation by thel6-bit 65C816
processor. Pointers, for example, are 4 bytes long even though 3 bytes are sufficient to address any
memory location. Wherever such extra bytes occur they must be set to zero by the caUer; if they are
not, compatibility with future versions of GSiOS wiu be jeopardized.

Pointers in the parameter block must be written with the low-{)rder byte of the low-order word at the
lowest address.

Important The range of theoreticaUy possible values as defmed by the length of a parameter is
often very different from the range of permissible values for that parameter. The fact
that aU fields are an even number of bytes is one reason. Another reason is that the
permissible values for a field depends upon its file system.

GS/OS string format

GS/OS strinS' resemble Pascal-style strings. A Pascal-style string begins with a length byte that
defmes the length of the string in bytes, followed by the string itself, with each character equal to one
byte. A GSlOS string is very similar, except that it begins with a length word instead of a byte. See
Figure 3-1.

~ Volurtl: 1: Applications and GSiOS Part 1: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA)

Figure 3-1 GS/OS and Pascal strings

GSfOS SIring

length wold string I

I lenglh byte I 3tJing I
String parameters con.sist of a pointer parameter in the call's parameter block that points to a data
structure containing the string. For standard GS/OS calis, that data structure varies depending on
whether the string parameter is an input to or output from the call.

ProOOS !(H:ompatible calls use Pascal-style strings, with the exception of the GET_DIR_ENTRY call,
which uses GS/OS strings.

GS/OS Input string structures

When a string is used as an input from an application to GS/OS, a pointer in the call's parameter block
points to the low-order byte of the length word of the string, as shown in Figure 3-2.

Figure 3-2 GS/OS input string structure

(

pathrwne poi • I length-oro I

GS/OS result buffer

GSfOSillring
I

illring

,
I

When a string is returned as a result from a GSiOS caUto an application, a pointer in the parameter
block points to a buffer reserved for the result This buffer starts with a buffer length word that
spedfies the total length of the buffer, induding the buffer length word, as shown in Figure 3-3.

Ola(Xer 3: Making GS/OS Calis ffJ

8/31/88

GSIOS Reference (VoIum<1 1) Draft 3 (APDA)

FIgure 3-3 GS/OS result buffer

I

,-.poIMame __ pou!_ .• Ief_....... ----.~I t.JJf::=gdt Ilengdt word I

GS/OS string
1

string

\

How GS/OS rerums the result depends on whether or not there is enough space in the buffer
(excluding the buffer length word) to hold the output string. If there is enough space, the result is
placed in the buffer starting just after the buffer length word.

1be fIrst two bytes of the string are its length word If there is not enough space, GS/OS rerums only
the length word of the string, pladng it immediately after the buffer length word. 1bis gives the caller
the opporrunity to resize the buffer and reissue the call. The proper size is the value in the string
length word plus four (to account for the buffer and string length words).

If the area is too small to contain the string, GS/OS rerums a 'buffer too small" error and sets the
string length field to the actual string length. In this case, the string field is undefined. The caller must
add four to the rerumed string length to determine the total area size needed to hold the string and
the two length fIelds.

1be GetDirEnuy call is an exception to the preceding rules. For this call only, if the result does not fit
in the buffer, GS/OS copies as much of the string into the buffer as possible. The length word of the
string will be set to the actual string length, not the size of the string placed in the buffer. Thus, the
application may choose to use a partial string-for example, in a directory listing with a limited
number ci columns for the filena~r reissue the call to get a complete string.

Setting up a parameter block in memory

Each GS/OS call uses a 4-byte pointer to point to its parameter block, which can be anywhere in
meroory. All applications must obtain needed memory from the Memory Manager, and therefore
cannot know in advance where the memory block holding such a parameter block will be.

You can set up a GS/OS parameter block in memory in one of two ways:

1. Code the block directly into the program, referendng it with a label. This is the Simplest and most
typical way to do it The parameter block will always be correctly referenced, no matter where in
memory the program code is loaded.

~ Volume 1: Applications and GSIOS Part I: The Application Level

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

2. Use Memory Manager and System Loader calls to place the block in memory, as follows:

a. Request a memory block of the proper size from the Memory Manager. Use the procedures
described in the Apple HGS Toolbox Reference. The block should be either fIxed or locked.

b. Obtain a pointer to the block, by dereferendng the memory handle returned by the Memory
Manager (that is, read the contents of the location pointed to by the handle, and use that
value as a pointer to the block).

c. Set up your parameter block, starting at the address pointed to by the pointer obtained in
step (b).

Conditions upon return from a GS/OS call

When control returns to the caller, the registers have the values shown in Table 3-1.

Table 3-1

Register
A
X
Y
S
D
P
DB
PB
PC

Registers on exit from GS/OS

Description
zero if call successful, error code if call unsuccessful
unchanged
unchanged
unchanged
unchanged
shown in Table 3-2
unchanged
unchanged
address of next instruction

'Unchanged" means that GS/OS initially saves, and then restores when fmished, the value that the
register had just before the call.

When control returns to the caller, the processor status and control bits have the values shown in Table
3-2.

OIapter 3: Making GS/OS Calls 71

8/3 1/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

Table }-2 Status and control bits on exit from GS/OS

Register Descriotlon
n undefined
v undefined
m unchanged
x unchanged
d unchanged

unchanged
z 0 if call unsuccessful, 1 if caU successful
cOif call successful, 1 if caU unsuccessful
e unchanged

Note: The n flag is undefined here; under ProDOS 8, it is set according to the value in the
accumulator.

Checking for errors

When control returns to your application, the carry bit will be set to 1 if an error occurred, and the
error code (if any) will be in register A. You can thllS use a Branch if Carry Set (BCS) instruction to
branch to an error-handling routine, and then pick up the error code from register A.

Fatal GS/OS errors are handled by the GS/OS Error Manager. When a fatal error occurs, the GS/OS
Error Manager displays a failure message on the screen and halts execution of GS/OS. If the error is
unrecoverable and requires that the system be rebooted, the GS/OS Error Manager calls the System
Failure Manager, a part of the Apple lies Toolbox. 11le System Failure Manager is described in the
chapter 'Miscellaneous Tool Set" in the Apple llGS Toolbax Reference.

The errors that specifically apply to a particular caU are listed as part of the call description in Chapter
7. Other errors can occur for almost any of the calls. For example, almost any call can return error $54
(out of memory), and perhaps you would want to invoke a special error handler for that condition.

71. Volume I: Applications and GSiOS Part I: The Application Level

8/31/88

GYOS Reference (Volume J) Drafl3 (APDA)

Chapter 4 Accessing GS/OS Files

The most CO[JUl\()n use of GS/OS is to access files that contain data on a storage
medium. A file is an ordered collection of bytes that has several attributes,
including a name and a file type.

GSiOS tries to free you, as an application programmer, from knowing more
about files and file systems than you want to. GSiOS has been built on the
theory tha~ in most cases, you only want to assign the attributes that are critical
to the function of the Hle, and that you're not really interested in where the user
chooses to store the file.

Thus, this chapter assumes that you want to access Hies using the simplest
possible method. Using this method, you call the Apple IIGS Toolbox routines
SFPutFile or SFGetFIie (from the Standard File Operations Tool Set) to
construct the name of the file the user wishes to create or open. With this
method, you don't have to worry about the pathname to the file, since GS/OS is
able to autornaticaUy construct the full pathname to the file.

If you want to build the pathname yourself, GS/OS also gives you that
capability; see Chapter 5, 'Working with Volumes and Pathnames."

Olapter 4: Accessing GS/OS files 73

8/31/88

GYlOS Reference (Volume 1) Draft 3 (APDA) 8/3 1/88

The simplest access method

To use this method, perform the following steps:

1. If you are creating a new file, call the tool set routine SFPutFile to get a pointer to the pathname of
the file that the user wishes to create. Save the pointer, and use it in a GS/OS Create call to place the
me on the disk.

If the user is opening an existing file, call the tool set routine SFGetFile to get a pointer to the
pathname of the file that the user wishes to open. Save the pointer, and use it in a GS/OS Open call
to open the file.

2. If the user is opening an existing file, call the tool set routine SFGetFile to get a pointer to the
pathname of the file the user wishes to open. Save the pointer, and use it in a GS/OS Open call to
open the file.

3. While the flle is open, you can do the following tasks:

• Read and write data to the file by making Read and Write calls.

• Move or get the current reading and writing position in the file by making SetMark and GetMark
calls.

• Move or get the current end-of-file (EOF) by making SetEOF and GetEOF calls.

• Enable newline mode, which terminates a read if the read encounters one of the specified newline
characters, or disable that mode.

• Write aU ooffered information to storage to ensure data integrity by making a Flush call.

4. When you have flllished working with the me, close it by making a Close call.

This chapter provides you with some information on how to use the file access calls. For more details
on each individual call, see Chapter 7, "GS/OS call Reference."

Creating a me
When you want your application to create a me, issue a GS/OS Create call. When you issue that call,
you assign some important characteristics to the file:

74 Volume 1: Applications and GSiOS Part I: The Application !.evel

.. '._-,

GY'OS RejerenC2 (Volume 1) Draft 3 (APDA) 8/31/88

• A pathname, which must place the me within an existing directory. As already mentioned, if you use
the Toolbox routine SFPutFile, you only have to save the pathname pointer it retums and supply that
pointer to GS/OS. If you want to build the pathname yourself, see Chapter 5.

• The file access, which determines whether or not the file can be written to, read from, destroyed, or
renamed, and whether the me is invisible.

• A file type and auxiliary type, which indicate to other applications the type of information to be
stored in the file. It does not affect, in any way, the contents of the me.

• A storage type, which determines the physical format of the me on the disk. There are three different
formats: one is used for directory files, the other two for nondirectory files. Once a file has been
created, you can't change its storage type.

• The size of the file and the size of the resource of the file, which are used to preallocate disk storage
for the ftle to be created. Under most circumstances, you can leave these parameters set to their
default of O.

When GSiOS creates the ftle, it places the properties listed above on disk, along with the current
system date and time (called creation date and creation time). A created ftle remains on disk until
it is deleted (using the Destroy call).

Opening a me

Before you can read information from or write information to a file that has been created, you must
use the Open call to open the me for access. When you open a ftle, you specify a pathname to a
previously created me; the me must be on a disk mounted in a disk drive or GS/OS retums an error. As
already mentioned, you can query the user for the filename by using the SFGetFile routine in the
Standard File Operations Tool Set of the Apple IIGS Toolbox.

The Open call retums a reference number that your application must save; any other calls you make
affecting the open file must use the reference number. The me remains open until you use the Close
call.

Multiple open calls can be made to ftles on block devices for read-Qnly access; in that situation, the
me remains open until you make a Close call for each me you opened.

GS/OS allows any numlJer of open ftles at a time limited only by the amount of total available
memory and number of available reference numbers. In practice, there is no limit to the number of
open flles.a practicallimi~ . However, each open me requires some system overhead, so in cases
where memory is in short supply, your application might want to keep as few ftles open as possible.

OJapter 4: Accessing GS/OS Files 75

GSfOS Reference (Volume 1) Draft 3 (APDA)

Your application can also funher limit the read-write access to a file when it makes a GS/OS Open
call; for example, if the file was created with read-write access, you could change that access to read
only.

You should be aware of the differences between a file on disk and portions of an open file in
memory. Although some of the me's characteristics and some of its data may be in memory at any
given time, the file irself still resides on the disk. This allows GS/OS to manipulate rues that are much
larger than the computer's memory capadty. As an application writes to the me and changes its
characteristics, new data and characteristics are written to the disk.

Working on open f.tles

When you open a me, some of the Ule's characteristics are placed into a region of memory. Several of
these characteristics are accessible to calling applications by way of GS/OS calls, and can be changed
while the rue is open.

This section describes the GS/OS calls that work with open files.

Reading from and writing to IDes

Read and Write calis to GS/OS transfer data between memory and a file. For both calls, the
application must specify the following information:

• reference number of the fIle (assigned when the rue was opened)

• location in memory of a buffer that contains, or is to contain, the transferred data

• number of bytes to be transferred

8/31/88

• cache priority, which determines whether or not the blocks involved in the call are saved in RAl'v! for
later reading or writing

When the request has been carried out, GS/OS passes back to the application the number of bytes
that it actually transferred.

A read or write request starts at the current Mark, and continues until the requested number of bytes
has been transferred (or, on a read, until the EOF has been reached). Read requests can also terminate
when a specified character is read.

~ Volume 1: Applications and GS/OS Part I: The Application Level

GYOS Reference (Volume 1) Draft 3 (APDA)

Setting and reading the EOF and Mark

Your application can place the EOF anywhere, from the current Mark position to the maximum
possible byte position. The Mark can be placed anywhere from the first byte in the file to the EOF.
These two functions can be accomplished using the SetEOF and SetMark calls. The current values of
the EOF and the Mark can be determined using the GetEOF and GetMark calls.

Enabling or disabling newline mode

Your application can use the Newline call to indicate that read requests terminate on a specified
character or one of a set of specified characters. For example, you can use this capability to read
lines of text that are terminated by carriage returns.

Examining directory entries

Your application does not need to know the details of directory format to access files with known
names. You need to examine a directory's entries only when your application is peIforrning
operations on unknown ftles (such as listing the ftles in a directory). The GS/OS call you use to
examine a directory's entries is called GetDirEntl)'; for more details, see GetDirEntl)' in Chapter 7.

Flushing open files

The GS/OS Flush call writes any unwritten data from an open file's I/O buffer to the ftle, and updates
the me's size in the directory. However, it keeps the reference number (returned from the Open call)
and me's buffer space active, and thus allows continued access [0 the file .

When used with a reference nuIriler of 0, Flush normally causes all open files to be flushed. SpecifiC
groups of files can be flushed using the system file level (see "Setting and Getting File Levels" later in
this chapter).

dosing files

When you finish reading from or writing to a me, you must use the Close call to close the file. When
you use this call, you specify only the reference number of the file that was assigned when the file was
opened.

Olapter 4: Accessing GS/OS Files T1

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

The Close call writeS any unwritten data from memory to the me and updates the file's size in the
directory, if necessary. Then it frees the file's buffer space for other uses and releases the file's
reference number and file control block. To access the file again, you must reopen it.

Infonnation in the file's directory, such as the file's size, is nonnally updated only when the file is
closed. If the user were to press Control-Reset (typically halting the current program) while a file is
open, data written to the me since it was opened could be lost, and the integrity of the disk could be
damaged. You can prevent this situation from occurring by using the Flush call.

Setting and getting file levels

When a ftle is opened, it is assigned a file level equal to the current value of the system me level.
Whenever a Close or Flush call is made with a reference number of 0, GS/OS closes or flushes only those
ftles whose levels are greater than the current system level.

The system ftle level feature can be used, for example, by a controlling program such as a
development system shell to implement an EXEC command:

I . The shell opens an EXEC prograin me when the level is $00.

2. The shell then sets the level to, for example, $07.

3. The EXEC program opens whatever mes it needs.

8/31/88

4. The EXEC program executes a GS/OS Close command with a reference number of $0000 to close all
the mes it has opened. All files at or above level $07 are closed, but the EXEC me itself remains open.

You assign a value to the system me level with a SetLevei call; you obtain the current value by making
a GetLevel call.

Working on closed files

This section describes some of the functions of the GS/OS calls that work with closed files. Some of
the calls that work with pathnames are performed on closed files; see Chapter 5, 'Working with
Volumes and Pathnames,' for more infonnation.

78 Volume 1: Applications and GSiOS Part I: The Application Level

G~OS Reference (Volume 1) Draft 3 (APDA)

Clearing backup status

Whenever a file is altered, GSIOS automatically changes the information about the file's state to
indicate that it has been changed but not backed up. Thus, an application that performs backups
can check the backup status to determine whether or not to backup the file.

If you want to change the state information about the backup, and in effect indicate to GS/OS thar
the file does not need to be backed up, you can use the ClearBackup call. This resets the backup
status so that it looks to GS/OS as if the file had not been altered. For example, you could use this
technique in a word-processing application if the user deleted something from the file bur then
decided to undo the change; issuing the ClearBackup call would prevent the file from being backed
up.

Deleting mes
If you want your application to delete a file on disk, you can use the GS/OS Destroy caU to delete the
file. You can use this technique only on subdirectories, standard mes, and extended files; you can't
use the technique to delete volume directories or character-<levice meso

Note Character-<levice files are treated somewhat differently. See Chapter II, 'Character
FST,' for a detailed discussion of that kind of file.

Setting or getting file characteristics

Certain characteristics about an open or closed file can be retrieved or modified by the standard
GS/OS calls SetFilelnfo and GetFilelnfo.

Important Although SetFileInfo and GetFileInfo calls can be performed on open files, you might not
get back the information you want It's safer to perform these calls only on closed files.

Those characteristics include:

• access to the file

• me type and auxiliary type

• creation time and date

• modification time and date

OJaprer 4: Accessing GS/OS Files 79

8/31/88

GSiOS Re/l!Tf!1Ice (Volume 1) Dmft] (APDA)

• a pointer to an option list for FST-specific information (see Part II of this manual for more
information about FSTs)

An example of how you can use SetFUelnfo and GetFilelnfo is given in the section "Copying Files" in
this chapter.

Changing the creation and modification date and time

The creation and modification fields in a file entry refer to the contents of the file. The values in
these fields should be changed only if the contents of the file change. Each field contains the time
and date information in the format shown in Table 4-1.

Table 4-1 Date and time format

Item Byte posltloQ

seconds Byte 1

minutes Byte 2

hour Byte 3
year Byte 4

day Byte 5

month Byte 6

ruII Byte 7

weekday Byte 8

Since data in the file's directory entry itself are nO(part of the file's contents, the modification field
should nO(be updated when another field in the me entry is changed, unless that change is due to an
alteration in the me's contents. For example, a change in the file's name is not a modification; on the
other hand, a.change in the me's EOF always reflects a change in its contents and, therefore, is a
modification.

Remember also that a me's entry is a part of the contents of the directory or subdirectory that
contains that entry. Thus, whenever a me entry is changed in any way (whether or not its
modiflCatioQ field is changed), the modification fields in the entries for all its enclosing
subdirectOries-including the volume directory-must be updated.

8l VoIulIE 1: Applications and GSiOS Pan J: The Application Level

813 1/88

GYOS Referrmce (Volume 1) Dmft 3 (APDA)

Finally, when a file is copied, a utility program must be sure to give the copy the same creation and
modification date and time as the original me, and not the date and time at which the copy was
created. See the section "Copying Files" in this chapter for more information.

Copying ftles

GS/OS provides several iechniques that help your application copy files. This section details those
techniques.

Copying single IDes

To copy single mes, perform the follOwing steps:

8/31/88

1. Make a GetFilelnfo call on the source me (the me to be copied), to get its creation and modification
dates and times.

2. Make a Create caU to create the destination file (the file to be copied to).

3. Open both the source and destination fIles . Use Read and Write calls to copy the source to the
destination. Close both files.

4. Make a SetFileInfo calion the destination file, using all the information rerumed from GetFilelnfo in
step 1. This sets the modification date and time values [0 those of the source file.

Copying multiple IDes

GS/OS provides a write-deferral mechanism that allows you [0 cache disk writes in order to increase
performance.

To use this technique, perform the following steps:

1. Start the write-deferral session by making a GS/OS BeginSession call.

2. Copy the files •

3. End the write-deferral session by making a GS/OS EndSession call.

The SessionStarus call also allows you to check whether a write-deferral session is currently in force.

CllapteI 4: Accessing GS/OS Files 81

GSiOS Reference (Volume 1) Draft 3 (APDA)

Important The price of the increased performance is increased caution. Do not allow your
application to exit while a write-<leferral mechanism is in force; you could harm the data
integrity of any open disk files. Make sure that you place an EndSession call in the flow
of both a normal and an abnormal exit

If your application gets error $54 (out of memory) when sessions are active, it should make an
EndSession call, make a BeginSession call, and try the operation again. If the operation still fails,
more EndSession and BeginSession calls will not help.

8Z Volwre 1: Applications and GSiOS Part I: 1be Application Level

8/3 1/88

GYOS Reference (Volume 1) Draft 3 (APDA)

Chapter 5 Working with Volumes and Pathnames

If you don't want to, you can usually avoid working with volumes, pathnames, and devices in detail;
GS/OS can free you from keeping track of exactly where files exist As discussed in Chapter 4, if you
use the Apple IIGS SUndard File Operations Tool Set routines SFPutFile and SFGetFile, you don't
need to know where a file is, since these routines tell GS/OS where the file is located.

In some situations, however, you may not be able to or may not want to use SFPutFile and SFGetFile.
For example, you might need or want more control if your application has any of the following
characteristics:

• It is text-based (and thus unable to access SFPutFile and SFGetFiJe).

8/3 1/88

• It needs to check whether particular files are in the appropriate directories; for example, if the data
files for an application need to be in the same directory as the application.

• It builds its own pathnames; for example, if you want to present a list of all mounted volumes to the
user.

In any of these cases, you have to understand more about pathnames and volumes, and just a little bit
more about devices. This chapter discusses the concepts you need to understand about those
entities, and the GS/OS calls that allow you to work with them

Note: This chapter doesn't discuss direct access to devices; for that information, see Volume
2, 'The Device Interface."

Working with volumes

Some GS/OS calls are designed to allow you to work directly with volumes, as described in the
following sections.

Olapler 5: Working with Volumes and Pathnames 83

GY'OS Reference (Volume 1) Draft 3 (APDA)

Getting volume information

GS/OS provides the Volume call to retrieve information about the volume currently mounted in a
specified device. You can retrieve the following information:

• name of the volume

• total number of blocks on the volume

• number of free blocks on the volume

• file system contained on the volume

• size, in bytes, of a block on the volume

An example of the use of the Volume call is given in the next section.

Building a list of mounted volumes

If you want your application to build a list of all the mounted volumes, you need to use the following
GSIOS calls:

1. To determine the names of the current devices, make DInfo calls for device 1, device 2, and so on
until GS/OS returns error $53 (parameter out of range). DInfo returns the name of the device
associated with that device number (see Chapter 7 for details on the DInfo call).

8/3 1188

2. Once you have the device name, you can use the GSIOS Volume call to obtain the name of the volume
currently mounted on the device.

You can also continue from this point to examine directroy entries and build the pathname to a file.
See the section "Building Your Own Pathnames" later in this chapter for more information.

Getting the name of the boot volume

If you need to determine the name of the volume from which GS/OS was booted, use the standard
GS/OS call GetBootVol to retrieve a pointer to the volume name. That name is equivalent to the
prefIX specified by */. For example, an application could star! up QuickDraw IT and the Event
Manager and then use the GetBootVol call to check if the boot volume is online. This would allow the
application to put up a custom dialog box if the boot volume was offline.

8! Volume 1: Applications and GSiOS Part I: The Application Level

GSIOS Rejerl!rJce (Volume 1) Draft 3 (APDA)

Formatting a volume

GS/OS provides two fonnat options to applications, as follows:

• The GSiOS Fonnat call attempts to physically fonnat the disk; this method is necessary when your
application can't read the existing volume.

8/3 1/88

• The GS/OS EraseDisk call assumes that a physicalJy fonnatted medium already exists in the
appropriate device, and writes new boot blocks, directory, and bitmaps to the disk. EraseDisk is
usual1y faster than Fonna~ but requires that the disk already be physically fonnatted. You can use this
calL for example, to quickly make all of the space reusable on a disk that can already be read by your
application.

In both of these cases, you have to provide a device name to the call, so you'll need to use the GS/OS
DInfo call at some point to fmd out the device name.

After you issue the EraseDisk or Fonnat call, GSiOS takes control, and presents a graphics or text
interface that allows the user to choose the file system to be used to fonnat the volume.

Note: If you don't want to give the user the option of selecting the file system to be placed on
the volume, you can specify the file system as a parameter to the EraseDisk or the
Fonnat call.

For GS/OS to present the graphics user interface, your application has to meet the following
requirements:

• The fiGS Toolbox Desk Manager must be active; by implication, all of the tools sets upon which the
Desk Manager depends must also be active (see the Apple IIGS Toolbox Reference).

• In addition, the List Manager must be active.

• For the graphics tools to run, 64 KB of free RAM must be available.

• The super hi-res screen must be currently displayed.

If all of these requirements are me~ GSiOS presents the graphics interface to the user; if any one of
the requirements are not me~ GS/OS presents the text interface to the user.

Working with pathnames'

If you need to, you can work directly with the pathnarne of a me. The following sections indicate the
pathname capabilities of GS/OS.

Chapter 5: Working with Volumes and Pathnames 85

GYOS Reference (Volume 1) Draft 3 (APDA)

Setting and getting preflxes

You can use standard GS/OS calls to manually set and retrieve the prefIx assigrunents_ The SetPrefIX
call explicitly sets one of the numbered prefixes to the prefIX you want, and the GetPrefIX call rerums
the current value of any of the numbered prefixes.

Important SetPrefIX and GetPrefix cannot be used to change or retrieve the boot volume prefix.
To retrieve the name of the boot volume prefIX, use the GS/OS GetBootVol call, as
described earlier in this chapter and detailed in Chapter 7. Your application cannot
change the prefIX of the boot volume at all. However, if the user renames the boot
volume, GS/OS will automatically adjust all pathnames to reflect the changed prefix.

Changing the path to a me

GS/OS allows you to change the path to a specified file. From the user's viewpoint of a file system,
this 'moves" the me from the old directory to the new directory, even though the physical location of
the me does not change. In additlon, if you change the path to a directory, all mes and d

To change the pathname, use the standard GS/OS call ChangePath. For detailed information about
how to change the path, see ChangePath in Chapter 7.

Expanding a pathname

GS/OS allows you to expand a paltial pathname into irs corresponding full pathname.

To expand the pathname, use the standard GS/OS call ExpandPath. For detailed information about
how to expand the path, see ExpandPath in Chapter 7.

Building your own pathnames

If you want your application to build a pathnarne by irself, you need to use several GS/OS calls, as
follows:

8/3 1/88

1. To detennine the names of the current devices, make Dlnfo calls for device 1, device 2, and so on
until GS/OS returns error $11 (invalid device number). The Dlnfo call returns the name of the device
associated with that device number (see Chapter 7 for details on OInfo).

g) Volume 1: Applications and GS/OS Part I: The Application Level

--.

GSIOS Reference (Volume 1) Draft j (APDA) , 8/31/88

,

!
;

2. Once you have the device name, you can use the ~SlOS Volume call to obtain the name of me volume
currently mounted on the device. i

3. Open that volume by using the GSiOS Open call. i
4. Get the directory entries for the files by using suc~essive GetDirEntry calls. ,

Introducing devices

A device is a physical piece of equipment that transfIJS infonnatiOn to or from the Apple llGS. Disk
drives, printers, mice, and joysticks are external devic~. The keyboard and screen are also
considered devices. An input device transfers informltion to the computer, an output device
transfers infonnation from the computer, and an inptit/output device transfers infonnation both ,
ways. i

I
GS/OS communicates with several different types of devices, but the type of device and its physical ,
location (slot or port number) need not be known to ~ program that wants to access that device.
Instead, a program rnakes calls to GS/OS, identifying the device it wants to access by its volume

I

name or device name. i

Device names

GSiOS identifies devices by device names.
beginning with a period O.

,

A GSiOS device name is a sequence of 2 to 32 characters
i ,

Your application must encode device names as sequertes of 7-bit ASCII codes, with the device name
in all uppercase letters and with the most significant bi, off. The slash character (/; ASCII 2F) and the
colon (: ; ASCII 3A) are always illegal in device names. i

!

I

I
Block devices

A block device reads and writes infonnation in multiples of one block of characters at a time.
Furthennore, it is a random-access device-it can acce¥ any block on dernand, without having to
scan through the preceding or succeeding blocks. Block devices are usually used for storage and

,

retrieval of infonnation, and are usuaUy input/output ~vices; for example, disk drives are block
devices. i

GS/OS supports two different kinds of access to block! devices, as follows:
,
I ,

ChaPter 5: Working with Volumes and Pathnames fi7
,

GSIOS Reference (Volume 1) ! Draft 3 (APDA) 8/31/88
i

I
I

• File access, where you make a GS/OS Read!or Write call, and GS/OS does the work of finding and
accessing the device. This process is described in Chapter 4.

i
• Direct access, which you can use if your agplication needs to directly access blocks. The calls that

directly access devices are briefly summarn1ed in Chapter 7, and discussed in detail in Chapter 2 of
Volume 2. :

,
Note: RAM disks are software constructs that the operating system treats like devices. GS/OS

supports any RAM disk that behavJs like a block device in all respects just as if it were a ,
block device. '

Character devices
i

A character device reads or writes a stream ot characters in order, one at a time. It is a sequential
access device-it cannot access any position iJ a stream without first accessing all previous
positions. It can neither skip ahead nor go back to a previous character. Character devices are usually
used to pass information to and from a user or lanother computer; some are input devices, some are
output devices, and some are input/output de.ijces. The keyboard, screen, printer and
communications port are character devices. I

i
GS/OS supports character devices through both direct and file access. For more information, see
Chapter 11 in this volume. i

Dttect~c~toderices

Generally, you don't need to do the work of aqcessing devices directly. For some special
applications and devices, however, you may wjlnt to take over that work; if you do, you'll have to

know a lot more about devices. See Volume 4, 'The Device Interface: for that information.

Device drivers

Block devices generally require device drivers 10 translate a file system's logical block device model
into the tracks and sectors by which information is actually stored on the physical device. Character
devices also require drivers. i

There are two types of GS/OS drivers; loaded 4rivers, which are RAM-based, and generated drivers,
which are constructed by GSiOS. Device drive~ are discussed in Volume 2 of this manual.

111 Volume 1: Applications and GSIOS Part I: The Application Level

GSiOS ReJerl!TlC2 (Volume 1)

,
,

Draft ~ (APDA)

ChaJ1ter 5: Working with Volumes and Pathnames tl)

8/31/88

GYOS Reference (Volume 1) Draft ~ (APDA) 8/3 i188 ,

Chapter 6 Working with System Information

,

t

Several GS/OS calls provide acce$ to information about GS/OS. This chapter
introduces you to them. i

1

chapter 6: Working with System Information 91
!

,

GSiOS Reference (Volume 1) i Draft 3 (APDA)

Setting and getting system preferences
I

GS/OS provides a preference word that allows ~our application to customize some GS/OS functions.
One of the options provided is the ability of ~ application using pathnarne callsto determine
whether or not it wants to handle error $45 (vol~rne not found) itself, or whether it wants to have
GS/OS handle those errors. ! . ,

For information on how to set up the preferenc~s word, and on any other options available in that
word, see the description of SelSysPrefs and G¢lSysPrefs in Chapter 7.

!

Checking FST information

If you want to check the information for a spedific FST, you can use the standard GSiOS call
GetFSTInfo. 'I1lat call returns the following infbrmation about the FST: ,
• name and version number of the FST

i

• some general attributes of the FSf, such as ~hether GS/OS will change the case of pathnames to
uppercase before passing them to the FST, and whether it is a block or character PST

;

• block size of blocks handled by the FSf i
;

• maximum size of volumes handled by the IjST
• maximum size of ftles handled by the FSf :

,

j

For IOOre detailed information about how to ~trieve the information, see GetFSTInfo in Chapter 7.
For IOOre information about FSTs, see Pan II of this volume.

Finding out the version of the operating system

If your application depends upon some featurd of GS/OS that was implemented in a version later
than 2.0, you can use the standard GS/OS call q]etVer.;ion to retrieve the version number of GS/OS.
For JlX)re detailed information about how to r~trieve the information, see the GetVersion caU in ,
Chapter 7. !

92 Volume 1: Applic:llions and GS/OS pan I: The Application Level

8/31/88

GSiOS Reference (Volume 1) Dmft ~ (APDA)

Getting the name of the curren~ application
I ,

To get the filename of the application that is currently ~xecuting, you can U5e the standard GS/OS call
GetName. For example, if an application wanted to <lliplay its own name to the user, it could use
GetName to get its current name (remember, the U5er 6n rename applications).

For more detailed information about how to retrieve ~e information, see the GetName call in ,
Chapter 7. i

I
C!lapter 6: Working with System Information 93
!

8/31/88

GSIOS Re/erma (Volume 1) Draft i (APDA)

Chapter 7

, ,

GS/OS Call Reference ,
i

i
This chapter provides the detaile<\ description for all GS/OS calls, arranged in
alphabetical order by call name. ~ach description includes these elements:

• the call's name and call nlllllb¢r ,
1

• a short explanation of its use ! , ,
• a diagram of its required par./meter block

1

• a detailed description of all ~rameter:s in the parameter block
1

• .a list of all possible operatinglsystem error messages.
! , ,

OIapter 7: GS/OS Call Reference 95

8/3 7/88

GYOS Reference (Volume 1) Dm[l3 (APDA)

The parameter block diagram and description

The diagram accompanying each call description is a simplified representation of the call's parameter
bkx:k in memory. The width of the parameter block diagram represents one byte; successive tick
marks down the side of the block represent successive bytes in memory. Each diagram also includes
these features:

8/3 1/ 88

• Offset: Hexadecimal numbers down the left side of the parameter block represent byte offse ts fro m
the base address of the block.

• Name: The name of each parameter appears at the parameter's location within the block.

• No.: Each parameter in the block has a number, identifying its position within the block. The total
number of parameten; in the block is called the parameter count (pCount); pCount is the initial
(zeroth) parameter in each call. The pCoun t parameter is needed because in some calls parameter
count is not fIXed; see MinImum parameter count, below.

• Size and type: Each parameter is also identified by size (word, longword, or double longword) and
type (input or result, and value or pointer). A word is 2 bytes; a longword is 4 bytes; a double
longword is 8 bytes. An input is a parameter passed from the caller to GS/OS; a result is a parameter
returned to the caller from GS/OS. A value is numeric or character data to be used directly; a pointer
is the address of a buffer containing data (whether input or result) to be used.

• MinImum parameter count: To the right of each diagram, across from the pCoun t parameter,
the minimum permitted value for pCount appears in parentheses. The maximum permitied value for
pCoun t is the total number of parameters shown in the parameter block diagram.

Each parameter is described in delail after the diagram.

% Volume I: Applic:ttions and GSiOS Part I: The Application Level

GSiOS Reference (Volume 1) Draft 3 (APDA)

$201D

Description

Parameters

pCount

Errors

BeginSession

This call tells GS/OS to begin deferring block writes to disk. Normally GS/OS
writes blocks to disk immediately whenever part of the system issues a block
write request. However, when a write deferral session is in progress, GS/OS
caches blocks that are to be written until it receives an EndSession call.

This technique speeds up multiple file copying operations because it avoids
physically writing directory blocks to disk for every file. To do a fast multiple
file copy, the application should exerute a BeginSession call, copy the files,
then exerute an EndSession call.

Offset No. Size and type

SOO FL... __ pC_o_u_nt __JJ - Word INPUT value (minimum =0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is O.

(none)

Olapter 7: GSiOS Call Reference 'J1

8/31/88

GY'OS Reference (Volume 1) Drajl3 (APDA)

$2031

Description

Parameters

pCount

intNwn

vrn

intCode

Errors

Bindlnt

This function places the address of an interrupt handler into GS/OS's intenupt
vector table.

For a complete description of GS/OS's intenupt handling subsystem, see
Volume 2. See also the UnbindInt call in this chapter.

Ocesel No. Size and type

$00 f- pCount - Word INPlIT value (minimum =3)

f- intNurn -S02
1 Word RESULT value

f- vrn - 2 Word INPlIT value

r- -$06

f- intCoda - 3 Longword INPlIT pointer
I- -

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.

Word result value: An identifying number assigned by GS/OS to the the binding
between the interrupt source and the intenupt handler. Its only use is as an inpm
to the GS/OS call UnbindInt

Word input value: Vector Reference Number of the firmware vector for the
interrupt source to be bound to the intenupt handler specified by intCode.

Longword input pointer: Points to the first instruction of the intenupt handler
routine.

$25 intenupt vector table full
$53 parameter out of range

sa Volume \: Applications and GS/OS Part [: The Application Level

8/31/88

-.- .. -

GS'OS Reference (Volume 1) Drafl3 (APDA)

$2004

Descrl ptlon

Parameters

pCount

pathname

newPathname

Comments

ChangePath

This Clll changes a file's pathnarne to another pathname on the same volume, or
changes the name of a volume. ChangePath Clnnot be used to change a device
name.

Offset No. Size and type

$00 t- pCount - Word INPUT value (minimum =2)

t- -$02

t- pathname - 1 Longword INPUT pointer
t- -

f- -S06

r newPathname - 2 Longword INPUT poiruer
t- -

Wold input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Longwold input pointer: Points to a GS/OS string representing the name of the
file whose pathname is to be changed.

Longwold input pointer: Points to a GS/OS string representing the new
pathnarne of the file whose name is to be changed.

A file may not be renamed while it is open.

A file may not be renamed if rename access is disabled for the file.

A subdirectory s may not be moved into another subdirectory 1 if s - lor if t is
contained in the directory hierarchy staffing at s. For example, ' rename /v to
/v/VI" is illegal, as is 'rename /v/w to /v/w/x".

Olaprer7: GSiOS Call Reference '))

8/31/88

GSiOS Reference (Volume]j Draft 3 (APDAj

Errors

$10 device not found
$27 VO error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 vol~ not found
$46 file not found
$47 duplicate pathname
$4A version error
$4B unsupported storage type
$4E access: file not destroy enabled
$50 file open
$52 unsupported volume type
$53 invalid parameter
$57 duplicate volume
$58 not a block device
$5A block number out of range

100 Velum: 1: Applications and GSiOS

8/31/88

-.

Part I: The Application Level

GS/OS Referena (Volume 1) Draft 3 (APDA)

$200B

Description

Parameters

pcount

pathname

Errors

ClearBackup

This call sets a file's state infonnation to indicate that the file has been backed
up and not altered since the backup. Whenever a me is altered, GS/OS sets the
file's state infonnation to indicate that the file has been altered.

OIIsel No. Size and type

$00 - peount - Word lNPlIT value (minimum '1)

$02 - -
- pathname - 1 Longword lNPlIT pointer

- -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Longword input pointer: Points to a GS/OS string that gives the pathname of
the file or directory whose backup status is to be cleared.

$27 VO error
$28 no device cOMected
$2B write-protected disk
$2E disk switched
$40 invalid pathname syntax
$44 path not found
$4 5 volume not found
$46 me not found
$4A version error
$52 unsupported volume type
$58 no! a block device

Onpter 7: GSiOS Call Reference 101

8/31/88

GYOS He/erena! (Volume 1) Draft 3 (APDA)

$2014

Description

Parameters

pCount

refNum

Errors

Close

This call closes the access path to the specified file, releasing all resources used
by the file and tenninating further access to it. Any file-related information that
has not been written to the disk is written, and memory resident data structures
associated with the file are released.

If the specified value of the re fNurn parameter is $0000, all files at or above the
current system file level are closed.

Offset No. SIze and type

$00 - pCount - Word INPIIT value (minimum .1)

$02 - refNum - 1 Word INPIIT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: The identifying number assigned to the file by the Open call.
A value of $0000 indicates that all files at or above the current system file level
are to be closed.

$27 VO error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$5A block number out of range

102 Volume 1: Applications and GSiOS Part I: The Application Level

8/31/ 88

. -'.

GSiOS Rejer!!'llCe (Volume 1) Draft 3 (APDA)

$2001

Description

Create

This call creates either a standard file, an extended me, or a subdirectory on a
volume nxlUnted in a block device. A standard me is a ProDOS-like file
containing a single sequence of bytes; an extended file is a Macintosh-like file
containing a data fork and a resource fork, each of which is an independent
sequence of bytes; a subdirectory is a data structure that contains information
about other ftIes and subdirectories.

This call cannot be used to create a volume directory; the Format call performs
that function. Similarly, it cannot be used to create a character-device file; the
character FST creates that special kind of me (see Chapter 1 I).

This call sets up file system state information for the new file and initializes the
me to the empty state. .

Cllapter7: GSiOS Call Reference 103

8/31/88

G£'OS Reference (Volume 1) Draft 3 (APDA)

Parameters

pcount

pathname

Offset NO. Slze and type

- pCount -sao Word INPUT value (minimum =1)

$02 - -- pathname - 1 Longword INPUT pointer
- -
f- acce.s.s - 2 Word INPUT value

f- fileType - 3 Word INPUT value

f- -lOA

f- auxType - 4 Longword INPUT value
f- -
r- !ltoraqeType -$OE

5 Word INPUT value

SIO r- -
r- eof - 6 Longword INPUT value
r- -

SI4
I- -
r- resourceEOF - 7 Longword INPUT value
r- -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 7.

Longword input pointer: Points to a GS/OS string representing the parhname of
the fIle to be created. This is the only required parameter.

lot Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

.. -- -- -

GS/OS Reference (Volume 1) Draft 3 (APDA)

access

fileType

auxType

storageType

Word input value: Specifies how the file may be accessed after it is created and
whether or not the file has changed since the last backup, as shown in the
following bit flag:

DeoUoy-<nable bit

Rename-cnable bit

Backup-needed .

reoerva:!

lile-invi,ible bit

Write-cnable bit

Read-enable bit

The most common setting for the access word is $OOC3.
Software that supports me hiding (invisibility) should use bit 2 of the flag to
detennine whether or not to display a me or subdirectory.

Word input value: Categorizes the file's content.s. The value of this parameter
has no effect on GS/OS's handling of the me, except that only certain file types
may be executed directly by GS/OS. The me type values are assigned by Apple
Computer and listed in Table 1-2 in Chapter 1 of this volume.

l.ongword input value: Categorizes additional information about the file. The
value of this parameter has no effect on GSiOS's handling of the file. By
convention, the interpretation of values in this parameter depends on the value
in the fileType parameter. The auxiliary type values by Apple Computer and
listed in Table 1-2 in Chapter 1 of this volume.

Word input value: The value of this parameter determines whether the file being
created is a standard file, an extended file, or subdirectory file. The following
values are valid:

$()()()(}-$OOO3' create a standard file
$0005 create an extended file
. $OOOD create a subdirectory file
'If this parameter contains $0000, $0002 or $0003, GS/OS interprets it as $0001
and actua1ly changes it to $0001 on output

Chapter 7: GS/OS Call Reference 105

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

eot

resourceEOF

Comments

Longword input value: The eot parameter specifies an amount of storage to be
preallocated during the create call for the file that is being created. The type of
entity is specified by the storageType parameter.

For a standard me, the eof parameter specifies the file size, in bytes, for which
space is to be preallocated. GS/OS preallocates enough space to hold a
standald me of the given size.

For an extended me, the eof parameter specifies the size, in bytes, of the data
fork. GS/OS preallocates enough space to hold a data fork of the specified
size.

For a subdirectory, the eof parameter specifies the number of entries the caller
intends to place in the subdirectory. GS/OS preallocates enough space for the
subdirectory to hold the specified number of entries.

Longword input value: For an extended me, this parameter specifies the amount
of space !O preallocate for the resource fork. GS/OS preallocates enough space
to hold a resource fork of the specified size. This parameter is meaningful only
if the storageType parameter value is $0005, indicating that an extended file
is to be created. .

. The Create call applies only to files on block devices.

The storage type of a me cannot be changed after it is created. For example,
there is no direct way to add a resource fork to a standald file or to remove one
of the forks from an extended me.

AI! FSfs implement standard mes, but they are not required to implement
extended meso

I~ Volu~ I: Applications and GSiOS Part I: The Application Level

8/3]/88

GYOS Reference (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45
$46
$47
$48
$49
$4B
$52
$53
$58
$5A

Dmft 3 (APDA)

device not found
VO error
write-protected disk
invalid pathname syntax
path not found
volume not found
file not found
duplicate pathnarne
volume full
volume directory full
unsupponed storage type
unsupponed volume type
Invalid parameter
not a block device
block number out of range

8/31/88

OIapter7: GSIOS Call Reference 107

GYOS Reference (Volume 1) DrrJft 3 (APDA)

$202E

DesCription

Parameters

pCount

devNum

code

DControl

This call sends control information to a specified device. This description only
provides general information about the parameter block; for more information,
see Volume 2, 'The Device Interface."

Orrsel No. She and type

r- pCount - Word INPUT value (minimum =5)

$02 r- devNum - Word INPUT value

r- code - 2 Word INPUT value

r- -$06

r- list - 3 Longword INPUT pointer
r- -

I- -
r- request Count _ 4 Longword INPUT value
r- -
I- -$OE

r transter<:ount - 5 Longword RESULT value
I- -

Word input value: The number of parameters in this parameter block. Minimum
is 5; maximum is 5.

Word input value: Device number of the device to which the control
information is being sent

Word input value: A number indicating the type of control request being made.
The control requests are described completely in Chapter 1 of Volume 2. Control
codes of $OOOO-$7FFF are standard status calls that must be supported by the
device driver. Device-specific control calls may be supported by a particular
device; they use status codes $8000-$FFFF. A list of standard control codes is as
follows:

1<l! Vorume 1: Applications and GSiOS Part I: The Application Level

8/31/88

G!'IOS Reference (Volume 1)

$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$OOOA-$7FFF
SSOOO-$FFFF

Draf/3 (APDA)

ResetDevice
FormatDevice
Eject
SetConfigParameters
SetWaitStatus
SetFormatOptions
AssignPartitionOwner
ArmSignal
DisarmSignaJ
SetPartitionMap
(reserved)
(device-specific subcalls)

list Longword input pointer: Points to a buffer containing the device control
information. The format of the data rerurned in the control buffer depends on
the control code as described in Volume 2, "The Device Interface.'

requestCount Longword input value: For control codes that have a control list, this parameter
gives the size of the control list.

transferCount Longword result value: For control codes that have a cbntrollis~ this parameter
indicates the number of bytes of information actually transferred to the device.

Errors

$11 invalid device number
$53 parameter out of range

Olapter7: GS/OS Call Reference IW

8/31/88

Gstos Reference (Volume 1) Draft 3 (APDA)

$2002

Description

Parameters

pCount

pathname

Destroy

This call deletes a specified standard me, extended file (both the data fork and
resow-ce fork), or subdirectory, and updates the state of the me system to
reflect the deletion, After a me is destroyed, no other operations on the file are
possible.

This call cannot be used to delete a volume directory; the Format call
reinitializes volume directories.

It is not possible to delete only the data fork or only the resource fork of an
extended me.

Before deleting a subdirectory file, you must empty it by deleting all the files it
contains.

OfEo.e! No. Size and type

SOIl r pCount - Word INPUT value (minimum =1)

$02 r -
f- pathname - 1 Longword INPUT poiruer
f- -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Longword input pointer: Points to a GS/OS sUing representing the pathname of
the me to be deleted.

lIO Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

.-,

GSIOS Reference (Volume 1) Draft 3 (APDII)

Comments

Errors

A file cannot be destroyed if it is currently open or if the access anributes do
not permit destroy access.

$10 device not found
$27 VO error
$2B write-protected disk
$40 invalid pathnarne syntax
$44 path not found
$45 volume not found
$46 file not found
$4B unsupponed storage type
$4E access: file not destroy-enabled
$50 file open
$52 unsupponed volume type
$53 invalid parameter
$58 not a block device
$5A block number out of range

iliIpter 7: GSiOS Call Reference 11l

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

$202C

Description

Parameters

pCount

DInfo

This call rerurns general infonnation about a device attached to the system.

Offset No. Size and type

- peount -$00
Word INPUT value (minimum '2)

- devNum -$Oz
Word INPUT value

r- -$04

I- devName - 2 lDngword INPUT pointer
I- -

I- characteristic:s_ 3 Word RESULT value

lOA r- -
I- totalBloeks - 4 lDngword RESULT value
I- -
I- slotNum -$0£

5 Word RESULT value

$10 - unitNum - 6 Word RESULT value

r- version -$IZ
7 Word RESULT value

I- devieeID -$14
8 Word RESULT value

'- headLink -$16
9 Word RESULT value

- forwardLink -$18
10 Word RESULT value

$IA - -
_ extendedDIBptr _

11 lDngword INPUT pointer
- ...,

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximwn is 11.

1U Volurre 1: Applications and GSiOS Pan I: The Application Level

8/31/88

GSfOS Rejer(!flCl! (Volume 1) Draft 3 (APDA)

devNum Word input value: A device number. GS/OS assigns device numbers in sequence
1. 2. 3 as it loads or creates the device drivers. There is no fIxed
correspondence between devices and device numbers. To get information
about every device in the system, one makes repeated calls to DInfo with
devNum values of 1. 2. 3 until GS/OS rerurns error $11 (invalid device
number).

devName Longword input pointer: Points to a result buffer in which GS/OS rerurns the
device name of the device specified by device number. The maximum size of
the string is 31 bytes so the maximum size of the rerumed value is 33 by1es. Thus
the buffer size should be 35 bytes.

characteristics Word result value: Individual bits in this word give the general characteristics of
the device. as shown in the following bit flag:

totalBlocks

slotNum

device is. RAM diok or ROM disk

device is • linked device

resetVed

device is busy

"""",ed

biLS indiare devia: ,peed

device is a block device

wrl!ing to device allo,.ed-'

n:ading from devia: allowed

"""",ed

formoaing device allowed

cievia: contains removable media

Longword result value: If the device is a block device, this parameter gives the
maximum number of blocks on volumes handled by the device. For character
devices, this parameter rerurns zero.

Word result value: Slot number corresponding to the resident firmware
associated with the device or slot number of the slot containing the device.
Valid values are $OC'OO-OOOF.

Olaple1' 7: GSiOS Call Reference 113

8/31/88

GS/OS Reference (Volume 1) Dtaft 3 (APDA)

unitNum.

version

deviceID

Word result value: Unit number of the device within the given slot. This
parameter has no correlation with device number.

Word result value: Version number of the device driver. This parameter has the
same format as the SmartPort version, as shown in the following bit flag:

1151141 131 12111110 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I I I 0 I
! I

Major '*- number]

Minor release number

Release plwe
A - Alpha
a-Be ..

E - Experimental
0- Final

For example, a version of 2.00 in this format would be entered as $2000; a
version of 0.18 Bera would be entered as $018B:

Word result value: An identifying number associated with a particular type of
device.

This parameter may be useful for Finder-type applications when determining
what type of icon to display for a particular device. Current definitions of
device ID numbers include:

114 VoIulll! 1: Applicalions and GSiOS Part I: The Application Level

8/31/88

GS'OS Reference (Volume 1) Draft 3 (APDA)

headLink

forwardLink

$0000

$0001
$0002
$0003

$0004
$0005
$0006
$0007
$0008
$0009
$OOOA
$OOOB
$OOOC
$OOOD
$OOOE
$OOOF

Apple 5.25 Drive
(includes UniDisk"',
DuoDisk"', Disk lIe,
and Disk II)
Profile 5 ME
Prome 10 ME
Apple 3.5 Drive
(includes UniDisk 3.5
Drive)
SCSI (generic)
SCSI hard disk
SCSI tape drive
SCSI CD ROM
SCSI printer
Serial modem
Console driver
Serial printer
Serial laser Writer
AppleTalk LaserWriter
RAM Disk
ROM Disk

$0010
$0011
$0012
$0013
$()()14
$0015
$0016
$0017
$0018
$0019
SOOlA
$OOlB
$OOlC
$OOID
$OOlE
$OOlF

File Server
Reserved
AppleDesktop Bus
Hard disk (generic)
Floppy disk (generic)
Tape drive (generic)
Character device driver (generic)
MFM-encoded disk drive
AppieTalk network (generic)
Sequential access device
SCSI scanner
Other scanner
userWriter SC
AppleTaik main driver
AppleTaik me service driver
AppleTalk RPM driver

Woit! result value: A device number that describes a link to another device. It is
the device number of the first device in a linked list of devices that are
associated with each other because they represent distinct partitions on a single
disk medium A value of 0 indicates that no link exists.

Woit! result value: A device number that describes a link to another device. It is
the device number of the next device in a linked list of devices that are
associated with each other because they represent distinct partitions on a Single
disk. A value of 0 indicates that no link exists.

extendedDIBptr Longwoit! input pointer: Points !O a buffer in which GS/OS returns information
about the extended device information block.

Errors

$11 invalid device number
$53 parameter out of range

<lIaprer 7: GS/OS Call Reference liS

8/3 1/88

GSiOS Rejerl!rlCe (Volume 1) Draft 3 (APDA)

$202F

Description

Parameters

pcount

devNum

buffer

DRead

This call perronns a device-level read on a specified device.

This description only provides general information about the parameter block;
for more information, see Volume 2, "The Device Interrace.'

Offsel No. Size and type

$00 - pCount - Word INPUT value (minimum -6)

- devNum - 1 Word INPUT value

- -
- butfer - 2 Longword INPUT pointer
- -
- -
_ reque.stCount _ 3 . Longword INPUT value
- -
I- -soc
r startingBlock - 4 Longword INPUT value
r -

$10 r blockSize 5 Word INPUT value

r -$12

r transfarCount - 6 I.ongword RESULT value
r -

Word input value: The number of parameters in this parameter block. Minimum
is 6; maximum is 6.

Word input value: Device number of the device from which data is to be read.

Longword input pointer: Points to a buffer into which the data is to be read.
The buffer must be big enough to hold the data.

116 Vo/UIlY! 1: AppIica1ions and GSiOS Part I: The Application Level

8/31/88

' -..- .-

GSIOS Reference (Volume 1) Dro/l3 (APDA)

requestCount Longword input value: Specifies the number of bytes to be read.

startingBlock Longword input value: For a block device, this parameter specifies the logical
block number of the block where the read starts. For a character device, this
parameter is unused.

blockSize Word input value: The size, in bytes, c:i a block on the specified block device.
For character devices, the parameter must be set to zero.

trans fe rCount Longword result value: The number of bytes actualIy transferred by the caU.

Errors

$11
$53

invalid device number
parameter out of range

Olaprer 7: GSiOS Call Reference 117

8/31/88

GSiOS Re/erenCl! (Vatu"",, 1) Draft 3 (APDA)

$202D

Description

Parameters

pcount

devNum

code

DStatus

Returns status information about a specified device.

This description provides only general information about the call; for more
information, see Volume 2, "The Device Interface:

Offset No. Size and type

$(X) r pCount - Word INPUT value (minimum -5)

r devNum. - 1 Word INPUT value

f- code - Z Word INPUT value

f- -$06

r list - 3 l.ongword INPUT pointer
f- -

r -
'- reque5tCount _ 4 l.ongword INPUT value
r -

r -$OE

r tran"fe.rCount - 5 l.ongwurd RESULT value
f- -

Word input value: The number of parameters in this parameter block. Minimum
is 5; maximum is S.

Word input value: Device number of the device whose status is to be returned.

Word input value: A number indicating the type of status request being made.
The status requests are described completely in Volume 2, "The Device
Interface." Status codes of $O()OO.$7FFF are standard status calls that must be
supported by the device driver. Device-specifIC status calls may be supported
by a particular device; they use status codes $8OOO-$FFFF. These are the
standard status codes:

118 Volume 1: Applic3tions and GS/OS Part I: The AppliCltion Level

8/3 1/ 88

GS/OS Rejerf!nCl! (VoiuTlfI! 1)

$0000
$0001
$0002
$0003
$0004
$OOO5-$7FFF
$8O()()..$FFFF

Draft 3 (APDA)

GetDeviceStatus
GetConfigParameters
GetWaitStatus
GetFormatOptions
GetPartitionMap
(reserved)
(device specific subcalls)

list Longworo input pointer: Points to a buffer in which the device returns its status
information. Details about the status list are provided in Chapter 1 of Volume 2.

request Count Longword input value: Specifies the number of bytes to be returned in the status
list The call will never return more than this number of bytes.

transferCount Longword result value: Specifies the number of bytes actuaUy returned in the
status list This value will always be less than or equal to the request count.

Errors

$11 invalid device number
$53 parameter out of range

Olap!er 7: GS/OS Call Reference 119

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

$2030

Description

Parameters

pCount .

devNum

buffer

DWrite

This call perfonns a device-level write to a specified device.

This description only provides general infonnation about the parameter block;
for more infonnation, see Volume 2, 'The Device Interface:

Offset No. Size 2I1li type

$00 '- pCount - Word INPUT value (minimum ·6)

- devNum -$02
Word INPUT value

- -
- buffer - 2 Longword INPUT pointer - -

SOIl - -
- requestCourit _ 3 longword INPUT value
- -

$OC - -
_ startingBlock _ 4 Longword INPUT value
- -

- bloc:kSize -$10
5 Word INPUT value

$12 - -
_ transferCount _ 6 Longword RESULT value
- -

Word input value: The number of parameters in this parameter block. Minimum
is 6; maximum is 6.

Word input value: Device number of the devic~ from which data is to be
written ..

Longword input pointer: Points to a buffer from which the data is to be written.

laJ Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

requestCount Longword input value: Specifies the number of bytes to be wriuen.

startingBlock Longword input value: For a block device, this parameter specifies the logical
block number of the block where the write starts. For a character device, this
parameter is unused

blockSize Word input value: The size, in bytes, of a block on the specified block device.
For character devices, the parameter is unused and must be set to zero.

transferCount Longword result value: The number of bytes actually transferred by the calL

Errors

$11 invalid device number
$53 parameter out of range

Olapter7: GS/OS Call Reference 121

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

$201E

Description

Parameters

pcount

Errors

EndSession

This call tells GS/OS to flush any deferred block writes that occurred during a
write-<leferraJ session (started by a BeginSession call) and to resume normal
write-through processing for all block writes.

Offset No. SIze and type

SOO LE __ pC_o_u_n_t _---'3 - Word INPUf value (minimum '0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is O.

(none)

122 Vdulre 1: Applic3lions and GSiOS Part i: The Application Level

8/31/88

" .. ".

GYOS Reference (Volume 1) Draft 3 (APDA)

$2025

Description

Parameters

pCount

devName

volName

EraseDisk

This call puts up a dialog box that allows the user to erase a specified volume
and choose which file system is to be placed on the newly erased volume. The
volume must have been previously physically formatted. The only difference
between EraseDisk and Format is that EraseDisk does not physically fo rmat the
volume. See the Format call later in this chapter.

Offset No. Size and type

$00 - pCount - Word INPUT value (minimum =3)

- -
- devName - 1 Longword INPUT pointer
- -

S06 - -- volName - 2 Longword INPUT pointer
- -
f- fileSy3l0 - 3 Word RESULT value

soc f- reqFileSy.ID - 4 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maxinrum is 4.

Longword input pointer: Points to a GS/OS string representing the device name
of the device containing the volume to be erased.

Longword input pointer: Points to a GS/OS string representing the volume name
to be assigned to .the newly erased volume.

OJapter 7: GS/OS Call Reference 123

8/31/88

GSiOS Reference (Volume 1) D'af!3 (APDA)

fileSysID Word result value: If the cali is successful, this parameter identifies the file
system with which the disk was formatted. If the call is unsuccessful, this
parameter is undefined. The flle system IDs are as follows:

$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $oooA MS/DOS
$0004 Apple II Pascal $oooB High Sierra
$0005 . Macintosh (MFS) $OOOC ISO 9660
$0006 Macintosh (HFS) $OOOD-$FFFF reserved

reqFileSysID Word input value: Provides the flle system ID of the file system that should be
initialized on the disk. The values for this parameter are the same as those for
the fileSysID parameter.

Errors

If you supply this parameter, it suppresses the initialization dialog that asks the
user which me system to place on the newly erased disk. Normally, your
application should not use this parameter; use it only if your application needs
to fonnat the disk for a specific FST.

If the cany flag is set but A is equal to 0, the user selected cancel in the dialog
box.

$10 device not found
$11 invaJid device request
$27 VO error
$28 no device connected
$2B write-protected disk
$40 invalid pathname syntax
$53 parameter out of range
$58 not a block device
$5D file system not available
$64 invalid FST ID

124 Volurre I: Applications and GS/OS Part I: The Application Level

8/31/88

".,.

GSiOS Reference (Volume 1) Draft 3 (APDA)

$200E

Description

Parameters

pcount

inputPath

outputPath

flags

ExpandPath

This call converts the input pathname into the corresponding full pathname with
colons (ASCII $3A) as separators. If the input is a full pathname, ExpandPath
simply converts all of the separators to colons. If the input is a partial
pathname, ExpandPath concatenates the specified prefix with the rest of the
partial pathname and converts the separators to colons.

If bit 15 (msb) of the flags parameter is se~ the call converts all lowercase
characters to uppercase (all other bits in this word must be cleared). This call
also performs limited syntax checking. It returns an error if it encounters an
illegal character, two adjacent separators, or any other syntax error.

Offset No. Size and type

$00 r- pCount - Word INPUT value (minimum ~2)

r- -$02

r- inputPath - 1 Longword INPUT pointer
r-
r- -
r- outputPath - 2 Longword INPUT pointer
r- -

r- flag. - 3 Word INPUT value
$OA

Word input value: The nwnber of parameters in this parameter block. Minimum
is 2; maximum is 3.

Longword input pointer: Points to a GS/OS string that is to be expanded.

Longword input pointer: Points to a resuk buffer where the expanded pathname
is returned.

Word input value: If bit 15 is set to 1 this call returns the expanded pathname all
in uppercase characters. All other bits in this word must be zero.

Clapie!' 7: GSiOS Call Reference 125

8/31/88

G:lOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Errors

$40 invalid pathname syntax
$4F buffer too small

126 Volume 1: Applicatioos and GS/OS Part I: The Application Level

GSiOS Reference (Volume 1) Draft 3 (APDA)

$2015

Description

Parameters

pCount

refNurn

Flush

This call writes to the volume all file state information that is buffered in
melOOry but has not yet been written to the volume. The purpose of this call is
to assure that the representation of the fIle on the volume is consistent and up
to date with the latest GS/OS calls affecting the file.

Thus, if a power failure occurs immediately after the Flush call completes, i[
should be possible to read all data written to the file as well as all file attributes.
If such a power failure occurs, files that have not been flushed may be in
inconsistent states, as may the volume as a whole. The price for this security is
performance; the Flush call takes time to compiete its work. Therefore, be
careful how often you use the Flush call.

A value of $0000 for the re fNurn parameter indicates that all files at or above
the current fIle level are to be flushed.

Offi!et No. Size and type

SOO - pCount - Word INPUT value (minimum = 1)

$02 refNum Word INPUT value - -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: The identifying number assigned to the fIle by the Open call.
A value of $0000 indicates that all fIles at or above the current system fIle level
are to be flushed.

Chapter7: GS/OS Call Reference 127

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

$27 va error
$2B disk write protected
$2E disk switched
$43 invalid referenoe number
$48 volwne full
$5A block number out of range

128 Volume 1: Applicllioos and GSiOS

8/31/88

Part I: The Application !.evel

GS'OS Reference (Volume J) Draft 3 (APDA)

$2024

Description

Parameters

pcount

devName

volName

Format

This call puts up a dialog box that allows the user to physically format a
specified volume and choose which file system is to be placed on the newly
formatted volume.

Some devices do not support physical formatting, in which case the Forma[call
acts like the EraseDisk call and writes only the empty file system. See the
EraseDisk call earlier in this chapter.

Offoel

$00

lOz

$06

lOA

$OC

r

r
'-

-

-
-
-

-
-

pCount -

-
devName -

-
-

volName -
-

fileSy.ID -

reqFileSy.ID _

No. Size and type

Word INPUT value (minimum = 3)

1 Longword INPUT pointer

2 Longword INPUT pointer

3 Word RESULT value

4 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 4.

Longword input pointer: Points to a GS/OS string representing the device name
of the device containing the volume to be formatted.

Longword input pointer: Points to a GS/OS string representing the volume name
to be assigned to the newly formatted blank volume.

Olapter 7: GSiOS Call Reference 129·

8/31/88

GY'OS Reference (Volume 1) Draft 3 (APDA)

fileSysID Word result value: If the call is successful, this parameter identifies the file
system with which the disk was formaned. If the can is unsuccessful, this
parameter is undefined. The me system IDs are as follows:

$0000 reselVed $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reselVed
$0003 DOS 3.2 or 3.1 $OOOA MS/DOS
$0004 Apple II Pascal $OOOB High Sierra
$0005 Macintosh (MFS) $OOOC ISO 9660
$0006 Macintosh (HFS) $OOOD-$FFFF reselVed

reqFileSysID Word input value: Provides the me system ID of the file system that should be
initialized on the disk. The values for this parameter are the same as those for
the fileSysID parameter.

Errors

If you supply this parameter, it suppresses the dialog from the Disk
Initialization package that asks the user how the disk should be formatted.
Normally, your application should not use this parameter; use it only if your
application needs to format the disk for a specific FST.

If the carry flag is set but A is equal to 0, the user selected cancel in the dialog
box.

$10 device not found
$11 invalid device request
$27 VO error
$28 no device connected
$ 2B disk is write protected
$40 invalid pathname syntax
$53 parameter out of range
$58 not a block device
$5D file system not available
$64 invalid FST ID

]j) Volume 1: Applicatioos and GSiOS Part I: The Application Level

8/31/88

... --.

GSIOS Rejerl!rlC2 (Volume 1) Draft 3 (APDA)

$2028

Description

Parameters

pCount

dataBuffer

Errors

GetBootVol

Returns the volwne name of the volume from which the me GS/OS was last
loaded and executed. The volwne name rerumed by this caJJ is equivalent to the
prefIX specified by 'I.

No, . Size arxI type

pCount - Word INPUT value (minimum = 1)

-
dataBuffer _ Longword INPUT pointer

-

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

LongWord input pointer: Points to a memory area where a GS/OS output string
structure giving the boot volume 'name is to be rerumed.

$4F buffer too small

0lap!er7: GSiOS Call Reference 131

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

$2020

Description

Parameters

peount

devName

devNum

GetDevNumber

This call returns the device number of a device identified by device name or
volume name. Only block devices may be identified by volume name, and then
only if the named volume is mounted. Most other device calls refer to devices
by device number.

GS/OS assigns device numbers at boot time. The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for determining the
device number for a particular device.

Because a device may hold different volumes and because volumes may be
moved from one device to another, the device number returned for a particular
volume name may be different at different times.

Offsel No. SIze and type

$00 - pCount - Word INPUT value (minimum = 2)

$02 - -
- devName - Longword INPUT pointer
- -

- devNum -$06
2 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Longword input pointer: Points to a result buffer representing the device name
or volume name (for a block device).

Word result value: The device number of the specified device.

132 Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

.... -.

" . . -"

GSIOS RejerenCl! (Volume 1)

Errors

$10
$11
$40
$45

Draft 3 (APDA)

device not found
invalid device request
invalid device or volume name syntax
volume not found

8/31/88

OJapr.er 7: GS/OS Call Reference 133

GSIOS Referena (Volume 1) Drrif/3 (APDA)

$2ote

Description

Parameters

GetDirEntry

This call retums infomtltion about a directory entry in the volume directory or a
subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the appUcation to step forward or
backward through ftle entries or to specify absolute entries by entry number.

Offset No. Siu and type

$(X)
~ pCount - Word INPlJf value (minimum = S)

$02 - refNum - Word INPlJf value

- flag. - 2 Word RESULT value

- base - 3 Word INPlJf value

$08 _ displacement _ 4 Word INPlJf value

- -- name - 5 Longword INPlJf pointer
- -

- entryNum -$OE
6 Word RESULT value

- filaType -$10
7 Word RESULT value

I- -$12

I- eof - 8 Longword RESULT value
I- -
I- -$16

I- blockCount - 9 Longword RESULT value
r- -

$IA

134 VoIum: 1: Applications and GS/OS Part I: The Application Level

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

pCount

refNwn

flags

SIA r -
r -
f- -
~ createDateTime _ 10 Double longword RES UL T value

I- -
I- -
f- -

I- -$22

r -
I- -
f- modDateTirne - 11 Double longword RESULT value
I- -
f- -
'- -

I- acce.s.s -S2A
12 Word RESULT value

f- -S2C

- auxType - 13 I.ongword RESULT value
- -

- fHeSy.ID -SlO
14 Word RESULT value

- -
- optionList - 15 i.ongword INPUT pointer
- -

$36 - -
- resourceEOF - 16 . I.ongword RESULT value
- -

$3A - -
_ re.sourceBlocks _ 17 I.ongword RESULT value
- -

Wold input value: The number of parameters in this parameter block. Minimum
is 5; maxi!Jlllm is 17.

Word input value: The identifying number assigned to the directory or
subdirectory by the Open call.

Word result value: Flags that indicate various attributes of the file, as foJJows:

O1apter7: GSiOS Call Reference 13S

8/31/88

GS/OS Reference (Volume 1) Dmjl3 (APDA)

base Word input value: A value that tells how to interpret the displacement
parameter, as follows:

$0000 displacement gives an absolute entry number
$0001 displacement is added to current displacement to get next entry

number
$0002 displacement is subuacted from current displacement to get next

entry number

displacement Word input value: In combination with the base parameter, the
displacement parameter specifies the directory entry whose information is
to be returned. When the directory is first opened, GS/OS sets the current
displacement value to $0000, The current displacement value is updated on
every GetDirEntry call.

name

entryNum

fileType

eof

If the base and displacement parameters are both zero, GS/OS returns a 2-
byte value in the ent ryNum parameter that specifies the total number of active
entries in the subdirectory. In this case, GS/OS also resets the current
displacement to the first entry in the subdirectory.

To step through the directory entry by entry, you should set both the base and
displacement parameters to $0001.

Longword input pointer: Points to a result buffer giving the name of the file or
subdirectory represented in this directory entry.

Word result value: The absolute entry number of the entry whose information is
being returned. This parameter is provided so that a program can obtain the
absolute entry number even if the base and displacement parameters
specify a relative entry.

Word result value: The value of the file type of the directory entry.

Longword result value: For a standard me, this parameter gives the number of
bytes that can be read from the me. For an extended file, this parameter gives
the number of bytes that can be read from the fIle's data fork.

136 Volume: 1: Applications and GSiOS Part I: The Application Level

8/31/88

, .. "

GYOS Reference (Volume 1) Draft 3 (APDA)

blockCount Longword result value: For a standard file, this parameter gives the number of
blocks used by the file. For an extended file, this parameter gives the number of
blocks used by the file's dara fork.

createDateTime Double longword result value: The value of the creation date and time of the
directory entry. The fonnat of the date and time is shown in Table 4-1 in
Chapter 4.

modDateTime Double longword result value: The value ci the modification date and time ci
the directory entry. The fonnat of the date and time is shown in Table 4-1 in
Chapter 4.

access Word result value: Value of the access attribute of the directory entry.

auxType Longword result value: Value of the auxiliary type of the directory entry.

fileSy5ID Word result value: File system identifier of the file system on the volume
containing the me. Values of this paraJreter are described under the VoluJre call
later in this chapter.

optionList Longword input pointer: Points to a dara area where GS/OS returns FST-specific
infonnation related to the file. This is the same infonnation returned in the
option list of the Open and GetFilelnfo calls.

This parameter points to a buffer that starts with a length word giving the total
buffer size including the length word. The next word is an output length value
which is undefmed on input On output, this word is set to the size of the
output dara excluding the length word and the output length word. G S/OS will
not overflow the available space specified in the input length word. If the dara
area is too small, the application can reissue the call after allocating a new
output buffer with size adjusted to output length plus four.

resourceEOF Longword result value: If the specified fIle is an extended file, this parameter
gives the number of bytes that can be read from the me's resource fork.
Otherwise, the parameter is undefmed.

resourceBlock5 Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file's resource fork. Otherwise, the
parameter is undefmed.

Olapter7: GSiOS Call Reference 137

8/31/88

GYOS Re/erena (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$27 VO error
$4A version error
$4B unsupported storage type

$4F buffer too small
$52 unsupported volume type

$53 invalid parameter
$58 not a block device
$61 end of directory

138 Volume 1: Applicalioos and GSiOS

8131188

Part I: The Application Level

GYOS Refgrence (Volume 1) Draft 3 (APDA)

$2019

Description

Parameters

pcount

refNum

eof

Errors

GetEOF

This function returns the current logical size of a specified me. See also the
SetEOF call.

Offset No. Size and type

$00 - pCount - Word INPlIT value (minimum = 2)

- refNum -$02
Word INPlIT value

- -
- eof - 2 lDngword RESULT value
f- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: The identifying number assigned to the me by the Open call.

Longword result value: The current logical size of the file, in bytes.

$43 invalid reference number

Chapter 7: GSiOS Call Reference 139

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

$2006

Description

Parameters

GetFileInfo

This call returns certain file attributes of an existing open or closed block file.

Important A GetFileInfo call following a SetFilelnfo call on an open file may
not return the values set by the SetFilelnfo call. To guarantee
recording of the aruibutes specified in a SetFilelnfo call, you muse
first close the file.

See also the SetFilelnfo call.

Offset No. She and type

$00
I- pCount - Word INPlIT value (minimum = 2)

r- -$02

I- pathname - 1 Longword INPlIT pointer
r- -

r- access -$06
2 Word RESUlT value

r- fileType -$08
3 Word RESULT value

r- -lOA

r- auxType - 4 Longword RESULT value
'- -
... storaqeType -IOE

5 Word RESULT value

I- -$10

- -
- -
_ createDateTime _ 6 Double longword RESULT value

- -- -
- -

140 Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

GS''OS Referena! (VolulIII1 1) Draft 3 (APDA)

pcount

pathname

access

fileType

auxType

SI8 I- -
I- -
I- -
I- modDateTime - 7 Double longword RESULT value
I- -
I- -
'- -

S20
r -
- optionList - 8 Longword INPUT pointer
- -

$24 - -
- eof - 9 Longword RESULT value
- -

S28 - -
- blocksUsed - 10 Longword RESULT value - -

$2C - -- resourceEOF - 11 Longword RESULT value - -

I- -S30

r resourceBlocks - 12 Longword RESULT value
I- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 12.

Longword input pointer: Points to a GS/OS string representing the pathname of
the file whose flie information is to be retrieved.

Word result value: Value of the file's access attribute, which is described under
the Create call.

Word result value: Value of the file's file type attribute.

Longword result value: Value of the file's auxiliary type artribute.

Olapter 7: GSiOS Call Reference 141

8/31/88

GSfOS Reference (Volume 1) Dra/13 (APDA)

storageType Word result value: Value indicating the storage type of the file .

$01 standard file
$05 extended file
$OD volume directory or subdirectory file

createDateTime Double longword result value: Value of the file's creation date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

modDateTime

optionList

eof

blocksUsed

Double longword result value: Value of the file's modification date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer: Points to a result buffer. On outpu~ GS/OS sets the
output length field to a value giving the number of bytes of space required by
the output data, excluding the length words. GS/OS will not overflow the
available output data area.

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file , this parameter gives
the number of byteS that can be read from the file's data fork.

For a subdirectory or a volume directory file, this parameter is undefined.

Lbngword result value: For a standard file, this parameter gives the total number
of blocks used by the file. For an extended file, this parameter gives the number
of blocks used by the file's data fork.

For a sulxlirectory or a volume directory file, this parameter is undefined.

resourceEOF Longword result value: If the specified file is an extended file, this parameter
gives the number of bytes that can be read from the file's resource fork.
Otherwise, the parameter is undefined.

resourceBlocks Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file's resource fork . Otherwise, the
parameter is undefmed.

142 Volurre 1: Applicatioos and GSiOS Patt I: The Application Level

8/31/88

GYOS Reference (Volume 1) Draf/3 (ilPDA)

Errors

$10 device not found
$27 I/O error
$40 invalid pathname syntax
$44 path not found
$45 volwne not found
$46 file not found
$4A version error
$4B unsupported storage type
$52 unsupported volume type
$53 invalid parameter
$58 not a block device

8/31/88

0Iap!t:r7: GS/OS call Reference 143

GSiOS lIeference (Volume 1) Draft 3 (APDA)

$202B

Description

Parameters

pCount

fstNum

GetFSTInfo

This function rerums gener.il infollllation about a specified File System
Translator (FST). See also the SetFSTInfo call, and Part II of this guide.

Offset

$(X)
I-

$0 21-

$04

$06

lOA

soc

$OE

$10

$14

I-

I-
I-
I-

I-

f-

f-

I-
I-
r-

-
'-

-

pCount

fstNum

HleSysIO

fstName

version

attributes

blockSize

maxVolSize

maxFileSize

No. Size and type

- Word INPlIT value (minimum' 2)

- 1 Word lNPlIT value

- 2 Word RESULT value

-
- 3 Longword lNPlIT pointer
-

- 4 Word RESULT value

- 5 Word RESULT value

- 6 Word RESULT value

-
- 7 Longword RESULT value
-

-
- 8 Longword RESULT value -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 8.

Word input value: An FST nurroer. GSiOS assigns FST numbers in sequence (1, 2,
3, and so on) as it loads the FSTs. There is no fIxed correspondence between
FSfs and FST numbers. To get information about every FST in the system, one
makes repeated calls to GetFSTInfo with fstNum values of 1,2, 3, and so on
until GS/OS rerums error $53: parameter out of range.

144 Volume 1: Applic3tions and GSiOS Part I: The Application Level

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

fileSysID

fstName

version

attributes

blockSize

maxVolSize

Word result value: Identifies the file system as follows:

$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 OOS 3.3 $0009 reserved
$0003 OOS 3.2 or 3.1 $OOOA MS/DOS
$0004 Apple IT Pascal $OOOB High Sierra
$0005 Macintosh (MFS) $OOOC ISO 9660
$0006 Macintosh (HFS) $OOOD-$FFFF reserved

Longword input pointer: Points to a result buffer where GS/OS is to rerum the
name of the FST.

Word result value: Version number of the FST, in the following format:

protaype rel...., - 1
fin2lreJ.....-O

J511,4113112111110 I 9 I ~ I ; I 6 I 5 I 4 I 3 I 2 11 I ~ I

major rel...., number

minor release nUnDer

Word result value: General attributes of the FSf, as follows:

GS/OS all dLsp2lCher ,hould
capil2/iZe palhnameo

before p ing them • 1
GSIOS call di5parcher should

capitalize eLSe paIhnameo
before paMing them - 0

dwlIcrer FST - 1
blockFST - 0

re5eIYed

Word result value: The block size (in bytes) of blocks handled by the FST.

Longword result value: The maximum size (in blocks) of volumes handled by the
FST.

ClJapter 7: GSiOS Call Reference 145

8/31/88

GSIOS Reference (Volume I) Drajl3 (APDA) 8/31/88

maxFileSize Longword result value: The maximum size (in bytes) of files handled by the FST.

Errors

$53 parameter out of range

146 VoIunr t: Applications and GSiOS Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA)

$201B

Description

Parameters

pcount

level

Errors

GetLeve1

This function returns the current value of the system file level. See also the
SetI.evel call.

Offset No. Siu and type

pCount - Word lNPUf value (minimum = 1)

level - 1 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: The value of the system me level.

$01 bad system call number
$04 parameter count out of range
$07 ProDOS is busy
$59 invalid file level

Chapter 7: GS/OS Call Ref= 147

8/31/88

G!Y'OS Re/erenu (Volume 1) Draft 3 (APDA)

$2017

Description

Parameters

pCount

refNwn

position

GetMark

This function returns the current me mark for the specified file. See also the
SetMark call.

Oftsel No. Size and type

$00 - pCount - Word INPtJr value (minimum ' 2)

- refNum -SOl Word INPtJr value

f- -
r position - 2 I.ongword RESULT value

f- -

Word input value: Tne number of parameter.; in this parameter block. Minimum
is 2; maximum is 2.

Word input value: The identifying number assigned to the me by the Open call.

Longword result value: The current value of the file mark in bytes relative to the
beginning of the file.

$43 invalid reference number

148 Volume 1: Applic:l!ions and GSiOS Part I: The Application Level

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

$2027

Description

Parameten

pCount

dataBuffer

GetName

Returns the filename (not the complete pathname) of the rurrently running
application program.

To get the complete pathname of the rurrent application, concatenate prefix 1/
with the filename returned by this call. Do this before making any change in
prefIx 1/.

Offset No. Size and type

pCount - Word INPlIT value (minimum' 1)

-
dataBuffer _ Longword INPlIT pointer

-

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

l.ongword input pointer: Points to a result buffer where the filename is to be
returned.

$4F buffer too small

Olapter 7: GS/OS Call Reference 149

8/31/88

GSIOS Reference (Volume]) Draft 3 (tlPDA)

$200A

Description

Parameters

peount

prefixNum

prefix

Errors

GetPreftx

This function returns the current value of anyone of the numbered prefixes. The
retumed prefIX string will always Stilt and end with a separator. If the requested
prefIX is null, it is returned as a string with the length field set to O. This call
should not be used to get the boot volume prefIX ('f); use the GetBootVol call
to do that. See also the SetPrefIX call.

Offset

$00

$02

$04

-
-
-
-
-

pCount

prefixNum

prefix

No. Slze and type

- Word INPUI' value (minimum = 2)

- 1 Word INPUI' value

-
- 2 Longword INPUT pointer
-

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: Binary value of the prefIX number for the prefIX to be
returned.

Longword input pointer: Pointer to a GS/OS output string structure where the
prefIX value is returned.

$4F buffer too small
$53 invalid parameter

\j) Volume 1: Applicalions and GSiOS Part I: The Application Level

8/31/88

. ,", ..

GYOS Referena! (Volume 1) Draft 3 (APDA)

$200F

Description

Parameters

pCount

preferences

GetSysPrefs

This call rerums the value of the current global system preferences. The value of
system preferences affects the behavior of some system calls. See also the
SetSysPrefs caU.

Offset No. SIu 2nd type

pCount - Word lNPlIT value (minimum = 1)

$02 ~ preferences - 1 Word RESULT value

Word uiput value: The number of parameters in this parameter block. Minimum
is 1; maximum is "!.

Word result value: Value of system preferences, as follows:

display volume llDunt dialog • 1
do not display volume IlDunt dialog • 0 rese!VOd (renuned as 0)

Errors (none)

Oll.pter 7: GS/OS Call Reference lSI

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

$202A

Description

Parameters

pCount

version

Errors

GetVersion

This call returns the version number of the GS/OS operating system. This value
can be used by application programs to condition version-dependent
operations.

Offset No. Size and type

SOO r- pCount - Word INPUT value (minimum : 1)

$02 I- version - Word RESULT value

Wort! input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Wort! result value: Version number of the operating system, in the following
format:

protoIype release' 1
final rei"""" • 0

J511,4113112111110 1 9 1 ~ 1 ; 1 6 1 5 1 4 1 3 1 2 1 1 1 ~ 1

major release 'UnDer

minor release number

(none except general system errors)

152 Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

$2011

Description

Parameters

pcount

Newline

This function enables or disables the newline read mode for an open file and,
when enabling newline read mode, specifies the newline enable mask and
newline character or characters.

When newline mode is disabled, a Read call terminates only after it reads the
requested number of characters or encounters the end of file . When newline
mode is enabled, the read also terminates if it encounters one of the specified
newline characters.

When a Read call is made while newline mode is enabled and there is another
character in the file, GS/OS performs the following operations:

1. Transfers the next character to the user's buffer.

2. Performs a logical AND operation between the character and the low-order
byte of the newline mask specified in the last Newline call for the open file.

3. Compares the resulting byte with the newline character or characters.

4. If there is a match, terminates the read; otherwise continues at step 1.

Offset No. SIze:utdtype

$00 - pCount - Word INPur value (minimum = 4)

- refNum -$02
1 Word INPur value

- enableMask. - 2 Word INPur value

$06 - numChar~ - 3 Word INPur value

r- -SOB

r newlineTable - 4 Longword INPur pointer
f- -

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 4.

Cllapter7: GSiOS Call Reference 153

8/31/88

GYOS Re/erena (Volume 1) Droft 3 (APDA)

refNum Word input value: The identifying number assigned to the file access path by the
Open caU.

enableMask Word input value: If the value of this parameter is $0000, disable newline mode.
If the value is greater than $0000, the low-order byte becomes the newline mask.
GS/OS perfonns a logical AND operation of each input character with the
newline mask before comparing it to the newline character or characters.

numChars Word input value: The number of newline characters contained in the newline
character table. If the enableMask is nonzero, this parameter must be in the
range 1-256. When disabling newline mode (enableMas k = $0000), this
parameter is ignored.

newlineTable Longword input pointer: Points to a table of from 1 to 256 bytes that specifies
the set of newline characters. Each byte holds a distinct newline character.
When disabling newline mode (enableMas k • $0000), this parameter is
ignored.

Errors

$43 invalid reference number

154 Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

.. 0"

.-.'.

GYOS Reference (Volume 1) Draft 3 (APDA)

$2000

Description

Parameters

pCount

Errors

Null

This call executes any pending events in the GS/OS event queue and in the
Scheduler queue before returning to the calling application. Note that every
GS/OS caU perfonns these functions. This call provides a way to flush the
queues without doing anything else.

Oflsel No. Size and type

$00 E __ pC_oU_"_t __ j..J _ Word INPIIT value (minimum = 0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maxinrum is O.

(none)

Olapler 7: GSiOS Call Reference ISS

8/31/88

GSiOS Reference (Volume 1) Drafl3 (APDA)

$2010

Description

Open

This caU causes GS/OS to establish an access path to a file. Once an access path
is established, the user may perform file Read and Write operations and other
related operations on the file.

This call can also return all the file information returned by the GelFilelnfo call.

156 VoIuJre 1: Applic3lions and GSiOS Part I: The Application Level

8/31/88

GSiOS Refen:nce (Volume 1) Dmj/3 (APDA) 8/3 1/88

. -..

Parameters
O((set No. SI2e and type

$00 - pCount - Word INPUT value (minimum = Z)

z_ refNum -so Word RESULT value

r- -
r- pathname - 2 Longword INPUT pointer
r- -

$OS r reque!ltAcce!!l!!l - 3 Word INPUT value

lOA r resoureeNumber - 4 Word INPUT value

r access -soc 5 Word RESULT value

'- fileType -$OE 6 Word RESULT value

$10 - -
- auxType - 7 Longword RESULT value
- -

- storageType -$14
8 Word RESULT value

$16 - -
- -
- -
- createOateTime - 9 DoiJble longword RESULT value

- -
- -
r- -

$IE

Olapter7: GS/OS Call Reference 157

GYOS Reference (Volume 1) Draft 3 (APDA)

pCount

refNum

pathname

$IE f- -
r- -
f- -
r- modDateTime - 10 Double longword RESULT value

r- -
f- -
r- -

I- -$26

r- optionList - 11 Longword INPUT pointer
'- -

I- -$2A

r- eof - 12 l.ongword RESULT value

I- -
$2l!

r -- blocks Used - 13 l.ongword RESULT value

- -

- -- resourceEOF - 14 l.ongword RESULT value
- -

136
r -
_ resourceBlocks _ 15 l.ongword RESULT value
- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 15.

Word result value: A reference number assigned by GS/OS to the access path. All
other file operations (Read, Write, Close, and so on) refer to the access path by
this number.

Longword input pointer: Points to a GS/OS string representing the pathname of
the file to be opened.

158 Volume 1: Applications and GS/OS Part I: The Application Level

8/31188

GSiOS Reference (Volume 1) D,aft3 (APDA)

requestAccess Word input value: Specifies the desired access permiSSions, as follows:

W· 1, r~ .,rite pemllwcln ..J

R • I, reque& .=1 pc:rmWion

If this parameter is not included or il5 value is $0000, th.e file is opened with
access permissions determined by the file's stored access attributes.

resourceNumber Word input value: This parameter is meaningful only when the pathname

parameter specifies an extended file. In this case, a value of SOOOO tells GS/OS
to open the data fork, and a value of $0001 tells it to open the resource fork.

access

fileType

auxType

storage Type

Word result value: Value of the me's access attribute, which is described under
the Create caU.

Word result value: Value of the me's file type attribute. Values are shpwn in Table
1-2 in Chapter 1.

Longword result value: Value of the file's auxiliary type attribute. Values are
shown in Table 1·2 in Chapter 1.

Word result value: Value of the me's storage type attribute, as follows:

$01 standard file
$05 extended me
$00 volume directory or subdirectory file

createDateTime Double longword result value: Value of the file's creation date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

modDateTime

optionList

Double longword result value: Value of the file's modification date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer: Poinl5 to a GS/OS result buffer to which FST-specific
information can be retumed. On output, GS/OS sets the output length field to a
value giving the number of bytes of space required by the output data,
excluding the length words. GS/OS will not overflow the available output data
area.

Olaprer 7: GSiOS Call Reference 159

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

eof

blocksUsed

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file's data fork.

For a subdirectory or volume directory file, this parameter is undefined.

Longword result value: For a standard file, this parameter gives the number of
bytes used by the file. For an extended file, this parameter gives the number of
bytes used by the file's data fork.

For a subdirectory or volume directory file, this parameter is undefined.

resourceEOF Longword result value: If the specified me is an extended file, this parameter
gives the number of bytes that can be read from the file's resource fork, even
when one is opening the data fork. Otherwise, the parameter is undefined.

resourceBlocks Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file's resource fork, even if one is
opening the data fork. Otherwise, the parameter is undefined.

Errors

$27 VO error
$28 no device connected
$2E disk switched
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$4A version error
$4B unsupported storage type
$4E accesS not allowed
$4F buffer too small
$50 me is open
$52 unsupported volume type
$58 not a block device

16J Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

GSIOS Reference (Voiume 1) Draft 3 (APDA)

$2003

Description

P:ltameters

OSShutdown

This call allows an application (such as the Finder) to shut down the operating
system in preparation for either powering down the machine or performing a
cold reboot. GS/OS terminates any write-deferral session in progress and shuts
down all drivers and FSTs.

The action of the call is determined by the values of the shutdownFlag

parameter. If Bit ° is set to 1, GS/OS performs the shutdown operation and
reboots the machine. If Bit 0 is cleared to 0, GS/OS petforrns the same
shutdown procedure and then displays a dialog box that allows the user to either
power down the computer or reboot. If the user chooses to reboo~ GS/OS then
looks at Bit 1 of the shutdownFlag parameter.

If Bit 1 is cleared to 0, GS/OS leaves the Memory Manager power-up byte alone;
this leaves any RAM disks intact while the machine is rebooted. If Bit 1 is set to
1, however, GS/OS invalidates the power-up byte, which effectively destroys
any RAM disk, before rebooting the computer.

Offset No. SJz.e and type

pCount - Word INPtrr value (minimum = 1)

$02 f- .hutdownFlag - 1 Word INPtrr value

pcount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

shutdownFlag Word input value: Two Boolean flags that give information about how to handle
the shutdown, as follows:

Cllaprer 7: GS/OS Call Reference 161

8/31/88

GSfOS Reference (Volume 1) Draft 3 (APDA)

Errors

Invalidate the Merrory Manager power-up byte when po.,erillg dOWlI-l·..J

l.clve Memory M2IIager power-up byte alone when powering down><o

(none)

Perform .hutdo and reboot the computer-l
Perform shutdown.oo display-O power-downJreboot dialog

162 Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

...... .

GSiOS Reference (Volume 1) Draft 3 (APDA)

$2029

Description

Parameters

pCount

pathname

Quit

This call tenninates the running application. It also doses all open files, sets the
system file level to 0, initializes certain components of the Apple ITGS and the
operating system, and then launches the next application.

For more information about quitting applications, see Chapter 2, "GS/OS and
Its Environment:

Offset No. Size and type

$(X)
I- pCount - Word INPUT value (minimum - 0)

I- -
r- pathname - Longword INPUT pointer
'- -
- flag. -$06

2 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 2.

l.ongword input pointer: Points to a GS/OS string representing the pathname of
the program to run next. If this parameter is null or the pathname itself has
length 0, GS/OS chooses the next application, as described in Chapter 2.

Olapler 7: GSiOS Call Reference 163

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

flags

Comments

Word input value: Two Boolean flags that give information about how to handle
the program executing the Quit call, as follows:

Place sure information oro, .. he qui'irlg...J
program on rile QUI rerum ...a so thai
it will be .womatically reswted I>ter. 1

Do n<:C .w:It rile quilling program • 0

The quilling program i, capable of being
reswted from i15dotm2nt mem,,,y im>ge' I
The quilling program m.ut be reloaded from

diol< if h reouned • 0

Only one error condition causes the Quit call to return to the calling application:
error $07 (GS/OS busy). All other errors are managed within the GS/OS program
dispatcher.

8/31/88

Errors .----

$07 GS/OS busy

164 Volume I: Applications and GSiOS Part I, The Application Level

GYOS Reference (Volume 1) DtrJft 3 (APDA)

$2012

Description

Read

This function attempts to transfer the number of bytes given by the
requestCount parameter, starting at the current mark, from the me specified
by the refNum parameter into the buffer pointed to by the dataBuffer

parameter. The function updates the me mark to reflect the new me position
after the read.

Because of three situations that can cause the Read function to transfer fewer
than the requested number of bytes, the function returns the actual number of
bytes transferred in the transferCount parameter, as follows:

• If GS/OS reaches the end of me before transferring the number of bytes
specified in request Count, it stops reading and sets transferCount

to the number of bytes actually read.

• If newline mode is enabled and a newline character is encountered before
the requested number of bytes have been read, GS/OS stops the transfer
and sets transferCount to the number of bytes actually read, including
the newline character.

• If the device is a character device and no-wait mode is enabled, the call
returns immediately with transferCount indicating the number of
characters returned.

Cllapter 7: GS/OS Call Reference 165

8/31/88

G~OS Referma (Volume 1) DrrJfl3 (APDt\)

Parameters
Offsct

r- pCount Word INPUT value (minimum • 4)

~ refNum - 1 Word INPUT value

I- -
~ datalluffer - 2 Longword INPUT pointer
r -
~ -.. requestCount _ 3 LoogwQrd INPUT value - -

soc - -
_ transfuCount: _ 4 Longword RESULT value
- -

$10 _ eaeh.Priority _ 5 Word INPUT value

pCount Won! input value: The number of parameter.; in this parameter block. Minimum
is 4; maximum is 5.

refNum Won! input value: The identifying number assigned to the me by the Open call.

da talluffer l.ongwon! input pointer: Points to a memory area large enough to hold the
requested data.

requestCount l.ongwon! input value: The number of bytes to be read.

transferCount Longword resuk value: The number of bytes acrually read.

cacheP riori ty Won! input value: Specifies whether or not disk blocks handled by the read call
are candidares for caching, as follows:
$0000 do not cache blocks involved in this read
$0001 cache blocks involved in this read if possible

166 Volulre 1: AppIic1ions and GSiOS Part I: The Application Level

8/31/88

GSfOS RefemIU (Volume l) Draft 3 (APDA) 8/31/88

Errol'S

$27 I/O error
$2E disk switched
$43 invalid reference number
Me eo(encountered
$4E access not allowed

OlapIer7: GS/OS Call Reference 167

GSiOS Referrma (Volume 1) DrrIft 3 (APDAJ

$201F

Desc:ription

Parameters

pCount

statu"

Errors

SessionStatus

This call returns a value that tells whether or nO(a write-<leferral session is in
progress. See also BeginSession and EndSession in this chapter.

Offset

peount - Word INPUT value (minimum = 1)

atatu. - 1 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: A value that tells whether or not a write-deferral session is in
progress.

$0000
$0001

(none)

no session in progress
session in progress

168 Volume 1: Applicalioos and GSiOS Part I: The Application Level

8/31/88

GSIOS Referena (Volume 1) DrrJft 3 (APDA,)

$2018

Description

Parameters

pCount

refNum

displacement

SetEOF

This call sets the logical size of an open me to a specified value which may be
either larger or smaller than the current file size. The EOF value cannot be
changed unless the file is write-enabled. If the specified EOF is less than the
current EOF, the system may-but need not-free blocks' that are no longer
needed to represent the file. See aoo the GetEOF call.

Offset No. SbJe ad type

$(X) - pCount - Wool INPUT value (minimum - 3)

- refHum -$Oz 1 Wool INPUT value

- base - 2 Word INPUT value

r -$06

r displacement - 3 Longword INPUT value
I- -

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.

Word input value: The identifying number assigned to the me by the Open call.

Word input value: A value that tells how to interpret the displacement

parameter.

$0000 set EOF equal to displacement
$0001 set £OF equal to old £OF minus displacement
$0002 set EOF equal to file mark plus displacement
$0003 set EOF equal to file mark minus displacement

Longword input value: Used to compute the new value of the eof as described
for the base parameter.

Olapter7: GSiOS Call Reference l(f)

8/31/88

GYOS Rtfmma (Volume 1) Dm/I3 (APDA)

Etron

$27 I/O error
$2B write-protected disk
$43 invalid reference number
$40 position out of range
$4E file not write-enabled
$5A block number out of range

170 Volunx: 1: Applications and GSiOS

8/31/ 88

-.-.

Part I: The Application Level

GS'OS Referrma (Volume 1) Dmft 3 (APDAJ

$2005

Description

SetFlleInio

This call sets certain file attributes of an existing open or closed block file . This
call immediately modifies the me infonnation in the me's directory entry
whether the Hie is open or closed. It does not affect the me infonnation seen
by previously open access paths to the same me.

Important A GetFLleWo call following a SetFileInfo call on an open me may
not return the values set by the SetFileInfo call. To guarantee
recording of the attributes specified in a SetFileInfo call, you must
fllSt close the me.

See also the GetFilelnfo call.

<l1ap!er 7: GSiOS Call Reference 171

8/31188

GS'OS Reference (Volume 1)

Parameters
Offset

$00

$02

$06

SOE

SID

-
-
-
-
r-

r-
r-
r-
r-

r-

r-
r-
r-

pCount -
-

pathnama -
-

access -

fileType -
-

auxType -
-

<null> -
---r- createDateTime -

r- -
r- -
r- -

$18

172 Volume 1: Applications and GSiOS

Dmjl3 (APOJ\) 8/31/88

No. bmdtype

Word INPur value (minimum = 2)

Longword INPur poinler

2 Word INPur value

3 Word INPur value

4 Longword RESULT value

5 Word INPur value

6 Double longword INPur value

Part I: The Application Level

........

GS'OS Refemla (Volume 1) D1rI/I3 (APDA)

peount

pathname

access

fileType

auxType

<null>

$18 r -
r -
r -
r mc>clDateTime - 7 Double longword INPlIT value
r -
r -
r -
f- -
r optionLiat - 8 Loogword INPlIT pointer
r -

$24 ... -
r <null> - 9 Longward INPlIT value
'- -

- -528
10 Longword INPlIT value

- <null> -
- -
- -
- <null> -

52C
11 Longword INPlIT value

- -
- -
- <null> -

12 Longword INPlIT value

- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 12.

Longword input pointer: Points to a GS/OS string representing the pathname of
the me whose flIe information is to be set

Word input value: Value for the me's access attribute, which is described under
the Create call.

Word input value: Value for the flIe's flIe type attribute.

Longword result value: Value of the flIe's auxiliary type attribute.

Word input value: This parameter is unused and mUSI be sellO zero.

0lapIer 7: GS/OS Call Reference 173

8/31/88

GYOS Referrmu (Volume 1) Dn1/13 (APDN

createDateTime Double longword input value: Value of the file's creation date and time
attribuleS. If the value of this parameter is zero, GS/OS does not change the
creadon date and time, The format of the date and time is shown in Table 4-1 in
Chapter 4.

modDateTime

optionList

<null>

<null>

<null>

<null>

Errors

Double longword input value: Value of the file's modification date and time
attributes. If the value of this entire parameter is zero, GS/OS sets the
modification date and time with the current system clock value. The format of
the date and time is shown in Table 4-t in Chapter 4.

Longword input pointer: Points to a GSIOS result buffer to which FST-speciflc
infonnation can be returned.

Longword input value: This parameter is unused and must be set to zero.

Longword input value: This parameter is unused and must be set to zero.

Longword input value: This parameter is unused and must be set to zero.

Longword input value: This parameter is unused and must be set to zero.

$ to device not found
$27 I/O error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$4 5 volume not found
$46 file not found
$4A version error
$4B ull5upported storage type
$4E access; file not destroy-enab1ed
$52 UlISUpported volume type
$53 invalid parameter
$58 not a block device

174 Volume 1: Appliallions and GSiOS Part I: The Application Level

8/31/88

.........

GStos Refenma! (Voluml/ 1) Dmf/3 (APDA)

$201A

Descripdon

Parameters

pCount

level

Errors

SetLevei

This function sets the current value of the system file level.

Whenever a file is opened, GS/OS assigns it a file level equal to the current
system file level A Oose call with a reference number of $0000 closes all flies
with file level values at or above the current system file level. Similarly, a Flush call
with reference number of $0000 flushes all files with file level values at or above
the current system file level See also the GetLevel call.

OCCset No. SI2e and type

$00 r pCount Word INPUf value (minimum = 1)

level - 1 Word INPUf value

Word input value: The number of parameters in this par:uneter block. Minimum
is 1; maximum is l.

Word input value: The new value of the system file level. Must be in the range
SQOOO-$OOFF.

$59 invalid file level

Olapter7: GSiOS Call Reference 175

8/31/88

GYOS Refemta (Volume 1) Draft 3 (AP1W

$2016

DescrIption

Parameters

SetMark

This call sets the me mark (the position from which the next byte will be read or
to which the next byte will be written) to a specified value. The value can never
exceed EOF, the current size of the file. See also the GetMark call.

Offset

r- pCount - Word INPUT value (minimum ' 3)

S02 r- refNum - 1 Word INPUT value

r- base - 2 Word INPUT value

r- -$06

r- displace ment _ 3 Longword INPUT value
r- -

peount Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.

refNum Word input value: The identifying number assigned to the me by the Open call.

base Word input value: A value that tells how to interpret the displacement

parameter, as follows:

$0000 set mark equal to displacement
$0001 set mark equal to EOF minus displacement
$0002 set mark equal to old mark plus displacement
$0003 set mark equal to old mark minus displacement

displacement lDngword input value: A value used to compute the new value for the file mark,
as described for the base parameter.

176 Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

-_ .. -"

GYOS Heferma (Volume 1)

Errors

$27
$43
$4D
$5A

DmjI3 (APDA)

I/O error
invalid reference number
position out of range
block number out of range

8/31/88

Cllapter7: GS/OS Call Reference 177

GYOS RefemICII (Volume 1) Draft 3 (APDt\)

$2009

Description

Parameters

pCount

prefixNum

prefix

SetPrefix

This call sets one of the numbered pathname prefrxes to a specified value. The
input to this call can be any of the following pathnames:

• afullpathname
• a partial pathname beginning with a numeric prefIx designator

• a partial pathname beginning with the special prefIX designator ··r
• a partial pathname without an initial prefrx designa tor

The SetPreflX call is unusual in the way it treats partial pathnarnes without initial
prefix designatolS. Normally, GSIOS uses the prefix 01 in the absence of an
explicit designator. However, only in the SetPrefIX call, it uses the prefIX nI
where n is the value of the prefixNum parameter described below. See aiso the
GetPrefIx call.

Offset No. Size mil type

$00 r- pCount - Word INPUT value (minimum = 2)

r- pre.fixNum -$02
Word INPUT value

r- -$04

r- prefix - 2 Longword INPUT pointer

r- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maxinrum is 2.

Word input value: A prefIX number that specifies the prefIX to be set

Longword input pointer: Points to a GSIOS string representing the pathname to
which the prefIX is to be set

178 Volume 1: Applicalions and GSiOS Part I: The Application Level

8/31/88

GS'OS Referena (Volume 1) D1rJjI3 (APDA)

Comments

Errors

Specifying a palhname with length 0 or whose syntax is illegal sets the
designated prefIX to null.

GS/OS does not check to make sure that the designated prefIX corresponds to
an existing subdirectory or file.

The boot volume prefIX (01) cannot be changed using this call.

$40 invalid pathname syntax
$53 invalid parameter

Olapler 7: GS/OS Call Reference 179

8/31/88

G~OS ReJerrmt:I1 (Volume 1) Draft 3 (APOA)

$20OC

Description

Parameters

pCount

preferences

Comments

SetSysPrefs

This call sets the value of the global system preferences. The value of system
preferences affects the behavior of some system calls. See also the GetSysPrefs
caJJ.

Offset No. Sl2emdtype

$(X) - pCount - Word INPlJr v:alue (minimum = 1)

$02 - preferences - 1 Word INPlJr v:alue

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: Value of system preferences, as follows:

Under certain circumstances, parts of the system call the system's Mount facility
to display a dialog asking the user to lOOunt a specified volume. This can
happen when the caJJ contains a reference number parameter or a pathname
parameter.

• For those calls that specify a reference number parameter (for example
Read, Write, Close), Mount always displays the dialog.

18) Vaume 1: AppJicaIions and GSiOS Part I: The Application Level

8/31188

GYOS Refl!mlCl! (Voillme 1) D'1YJj13 (APDA)

Errors

• For those calls that specify a pathname parameter, the Mount facility
displays the dialog only if system preference bit 15 is 1. Otherwise, Mount
retums the CANCEL return code which nonnally causes the system to return a
volume-not-found error. Thus, an application can be written to either
handle volume-not-found errors itself (system-preference bit 15 - 0) or to
allow the system to automatically display mount dialogs (bit 15 - 1), except
for the situation where the System Loader is attempting to load a dynamic
segment

• For those calls that result in the System Loader attempting to load a
dynamic segmen~ the System Loader always sets the system preference bit
(bit 15) to I, and then resets it to its original value when the segment has
been loaded. Thus, the Mount dialog box is always displayed when a
dynamic segment is requested.

(none)

0Iapter 7: GSiOS Call Reference 181

8/31/88

GSfOS Keferent:l! (Volume 1) Draft 3 (APDA)

$2032

Descripdon

Parameters

pcount

intNum

Errors

Unbindlnt

This function rerooves a specified interrupt handler from the interrupt vector
table.

For a complete description of the GS/OS interrupt handling subsystem, see
VoIwne 2. See also the BinelInt call.

Offset No. SIze aDd type

pCount - Word INPUT value (minimum ' 1)

$02 f- intNum - 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: Interrupt identification number of the binding between
interrupt source and interrupt handler that is to be undone.

$53 parameter out of range

I8Z Volume 1: Applications and GS/OS Part I: The Application Level .

8/31/88

GS/OS Referrmce (Volume 1) Draft 3 (APDA)

$2008

Description

Parameters

pcount

devName

volName

totalBlocks

Volume

Given the name of a block device, this call returns the name of the volume
IIxlUnted in the device, along with other infonnation about the volume.

Offset No. SIze :md type

$00 - peount - Word INPtrr value (minimum • 2)

r- -- devName - 1 Longword INPtrr pointer - -

- -
- volNa.rne - 2 Longword INPtrr pointer
- -

$OA - -
- totalBlock3 - 3 Longword RESULT value
- -

$OE - -
- :freeBlocks - 4 Longword RESULT value
- -
- filaSysID -$12

5 Word mULT value

t- blockSize -$14
6 Word RESULT value

Word input value: The nwnber of parameters in this parameter block. Minimum
is 2; maximum is 6.

Longword input pointer: Points to a GS/OS input string structure containing the
name of a block device.

Longword input pointer: Points to a GSiOS output string structure where GSiOS
returns the volume name of the volume mounted in the device.

Longword result value: Total number of blocks contained on the volume.

Clraprer 7: GSiOS Call Reference 183

8/31/88

G:IOS RefemlCl! (Volume 1) Dn1fI3 (APOA)

freeBlocks

fileSysID

blockSize

Errors

LongWord result value: The number of free (unallocated) blocks on the volume.

Word result value: Identifies the me system contained on the volume, as
follows:

$0000
$0001
$0002
$0003
$0004
$0005
$0006

reserved
ProDOS/SOS
DOS 3.3
DOS 3.2 or 3.1
Apple II Pascal
Macintosh (MFS)
Macintosh (HFS)

$0007
$0008
$0009
$OOQA
$OOOB
$OOOC
$OOOD-$FFFF

Word result value: The size, in bytes, of a block.

$10 device not found
$11 invalid device request
$27 LlO error
$28 no device connected
$ 2E disk switched
$45 volume not found
$4A version error
$52 unsupported volume type
$53 invalid parameter
$57 duplicate volume
$58 not a block device

USA
Apple CP/M
reserved
MS/DOS
High Sierra
ISO 9660
reserved

184 Volume 1: Applications and GSiOS Part I: The Application Level

8/31/88

G~OS Referrmce (VoIllme 1) Drajl3 (APDJ\J

$2013

Desaiption

Parameters

pcount

refNum

dataBuffer

Write

This call attempts to transfer the number of bytes specified by requestCount
from the caller's buffer to the file specified by the re fNum parameter staning at
the current me mark.

The function returns the number of bytes actually transferred The function
updates the me mark to indicate the new me position and extends the EOF, if
necessary, to acconunodate the new dati.

Offset No. Sble and type

$CO I- pCount - Word INPlIT value (minimum ' 4)

I- refNum -$02
1 Word INPlIT value

I- -
'- dataBuffer - 2 Longword INPlIT pointer , -

I- -$08

'- reque3tCount _ 3 Lenpord INPlIT value - -
soc , -

~ transferCount _ 4 Lengword RESULT value
- -

$10 _ each. Priority _ 5 Word INPlIT value

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 5.

Wold input value: The identifying number assigned to the me by the Open call.

Longwold input pointer: Points to the area of memory containing the dati to
be written to the me.

Olapter 7: GSiOS Call Reference 185

8/31/88

G:lOS Refl!rl!'f/C2 (VCJIu1M 1) Drofl3 (APDA)

reque"tCount Longword input value: The number of bytes to write.

tran"terCount Longword result value: The number of bytes actuaIly written.

cachePriority Word input value: Specifres whether or not disk blocks handled by the call are
candidates for ClIChing, as follows:

Errors

$0000 do not cache blocks involved in this call
$0001 cache blocks involved in this call if possible

$27 I/O error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$4E aa:ess not allowed
$SA block number out of range

1~ Volume 1: ApplicaliJns and GS/OS Part I: The Application Level

8/31/88

Ggar lIefonmce (Volume 1) Draft 2

Part IT The File System Level

Volume !

Vo!umeZ

Portl

GS/OSalb
("",pi devi", ails)

(Cluprern

Pan!

GSIOS devia: alb ---Driver-specific
informalion on

GSIOS devia: calli

Pan n

Driver ails -------
S ysrem servia: ails

Appendixes

ProDOS 16 calli
{Appendix A)

FST-specilic
information on
ProDOS 16 calli
{Appendix B)

Appendixes

Sysrem Loader ails
(Appendix B)

8/31/88

187

GYOS Reference (Volume 1) Draft 2 8/31/88

lIB Volume 1: Applications and GS/OS Part II: The File System Level

"" .. ,

GYOS Referertee (Volume 1) DmjI3 (APDA)

Chapter 8 File System Translators

This chapter describes how GS/OS is able to communicate with many different
types of files and devices, in a manner that is transparent to the application.
The operating system does this by supporting

• a generic GS/OS file interface (the abstract me system, described in
Chapter 1) with which applications communicate

• individual file system translators (FSIs) that act as intennediaries between
the GS/OS file interface and specific me systems and devices

This chapter discusses FSTs in general; the following Chapters in Part II describe
the individual FSTs suppplied with GS/OS.

Note: The me system translators in GSiOS handle both standard GS/OS
(class 1) calls and ProOOS 16-compatibJe (class 0) calls. Only the
standard GS/OS calls are described in this chapter and the rest of
Part II; for information on how FSIs handle ProOOS 16-style calls,
see Appendix B of this volume.

Chapler 8: Fde System Translators 189

8/31/88

GYOS Rejerena (Volume 1) Dm/l3 (APDA)

The FST Concept

Every file system, such as ProDOS or Macintosh HFS, stores directories, subdirectories, mes, and
possibly other data structures on disk volumes in a fonnat unique to that me system. Furtherroore,
each file system provides a slightly different set of system ca1ls for accessing its meso The uniqueness
of these data structures and system ca1ls makes it very difficult for an application program that uses
one file system to also access a volume created under another file system. Thus, application
programs are nearly always written to run with one particular file system.

A flle system translator (FST) is a GSIOS software module that accepts GS/OS calls made by
applications and translates those ca1ls into a form acceptable to the particular file system the FST
supports. likewise, the FST takes data read from the device and converts it to a form consistent
with the generic GS/OS file interrace (the abstract me system, described in Chapter 1). This makes it
possible to write an application in which the same set of file VO calls can access files on volumes
created by any file system for which there is an FST. Application programs can thus transparently
access files from any file system, using standard GSIOS system calls.

Note: FSTs provide only the file access capabilities d GS/OS (see Chapter 4), which are similar
to those of ProOOS 16. Because all FSTs use the same standard set of calls, they cannor
implement all access capabilities and all ca11s for all file systems. Moreover, some FSTs
cannot even support all of the capabilities provided by GS/OS. The High Sierra FST, for
example, does not permit calls that write to disk.

IlXJ Volume I: Applica1icns and GS/OS Part II: The File System !.evel

8/31/88

GS'OS Reference (Volume 1) DmjI3 (APDA)

Figure 8-1 The me system level in GS/OS

Device Dispatcher

Block Block aw.cr..r
device device device
driver driver driver

Block Clwaaer
device device device

Chmcter
device
driver

Chanaer
device

file system
level

Figure 8-1 shows the conceprual position of PSTs in the GS/OS hieralthy. They make up the file
system leveL which mediates between the GS/OS call dispatcher at the application level and
individual device drivers at the device level. When an FST receives a call, the call has been
preprocessed by the GS/OS call dispatcher. The PST either processes the call and returns successfully
or encounters an error condition and returns unsuccessfully with an error code. FSfs call the Device
Dispatcher, which performs the actual VO with calls to the device drivers. In addition, FSTs depend
on various services provided by the call manager, such as pathname prefIX management and error
handling.

Chapter 8: File System Translators 191

8/31/88

GYOS Referrmu (VoluIIIe 1) Dn1[13 (APD~

To GSlOS, all FSTs are equal. Any FST can be removed from the system by the user, and any FST can
be added. The user adds or removes FSTs from GSiOS by moving FST ftles into or out of the
subdirectory SYSTEMIFSI'S on the boot disk. See Appendix D.

Calls handled by FSTs

GS/OS calls can be classified by the part of the operating system that handles them File calls are
handled by FSTs, device calls are handled by the the Device Manager; and other calls are handled by
the GS/OS call manager itself. Table 8-1 lists all the GS/OS ca1ls handled by FSTs.

Table 8-1 GS/OS calls handled by FSTs

fan no, C3ll name (;oJ! no. Call name

$2001 Create $2015 Flush
$2002 Destroy $2016 SetMark
$2004 ChangePath $2017 GetMark
$2005 SetFilelnfo $2018 SetEOF
$2006 GetFilelnfo $2019 GetEOF
$2008 Volume $201C GetDirEntry
$200B ClearBackupBit $2020 GetDevNum
$2010 Open $2024 Format
$2012 Read $2025 EraseDisk
$2013 Write $2033 FSTSpecific
$2014 Close

As an application writer, you can expect that every FST will in some way support each of the calls
listed in Table 8-l. Depending on the file system accessed, the call may be meaningful, it may do
nothing and rerum no error, or it may do nothing and rerum an error. See the description of each FST
for details.

All of the calls listed in table 8-1 are described in Chapter 7 of !his volume, except for FSI'Specific.
FSTSpedtlc is a call whose function is completely definable by earn FST. For example, the High
Sierta FST (see Chapter 10) uses the call to control ftle type emulation. FSTSpecific is documented
individually for each FST that uses it, in the chapter that describes the FST.

192 Volume 1: Applications and GSiOS Part II: The File System Level

8/31/88

GS'OS Referrmce (VoiwIIe 1) DrrJjI3 (APDA)

Programming for multiple me systems

When you fltSt write an application for GS/OS, it may seem strange not to know what file system your
own application'S files will be stored on. In reality, it makes your job simpler, but you may have to be
careful in the beginning to avoid making some common incorrect assumptions.

Don't assume file characteristics

file-system independence is a ~omerstone of the GSiOS design. To be most useful and efficient, and
to avoid file-system-specific problems, your application should also be as me-system independent as
possible.

In general, you will be working with me information in the format returned by the GS/OS call
GetFilelnfo, rather than in the format of any real me system For example, don't assume file-typing
conventions other than the me type/auxiliary type provided in the GS/OS abstract file system; it is
the job of each FST to translate that information into the file-type format for each me system.

Remember that different me systems use different block sizes. Don't Simply assume that a block is
512 (or 256, or 520, or 1024) bytes; if you need to know the exact size of a block on a volume, use the
GSiOS Volume call to the device holding that volume.

In manipulating fIlenames and pathnames, don't assume any fIXed Ilmit on name length, and don't
assume other restrictions such as a limited ASCII character set Always allow for the GS/OS pathname
syntax: both colons and slashes are valid separators, and colons can only be separators. Detailed
fIlename and pathname rules are presented in Chapter 1 of this volume.

In general, go through the GSiOS fIle system level (by making standanl GSiOS calls) as much as
po5Sible, rather than perfonning file-system-specific or device-specific operations which may require
the presence of a particular PST, device driver, or device. Use GS/OS's file-system independence and
device independence to your own advantage.

Oiapter 8: File System Translators 193

8/31188

GS/OS Refemlal (Volume 1) D1rlft 3 (APDA)

Use GetDirEntry

If your progrnm needs to catalog a volume, don't read directory mes directly-that is, don't use the
Read call to fmd out what is in a directory. GetDirEntry gives you the information in a srandaid
format for all file systems, whereas with Read you need to know the exact format of a directory file
for the specifIC me system you are accessing. And, because the files of interest may be in any of a
number of file systeln'l, it is far simpler to use GetDirEntry and let GS/OS lake care of the details for
you.

Keep rebuilding your device list

Some applications construct a list d online devices only when they start up. 11lis works fine if the list
never changes, but under GS/OS new devices can be added dynamically during execution. Therefore,
instead of constructing your own device list, scan the device list each time you need to use it For
example, use repeated DInfo or Volume calls with consecutive device numbers, until an error is
returned (such as invalid device number) signals that there are no 1lX)re on-line devices.

Handle errors properly

Your application's normal error-handling routines may be adequate for processing errors under GS/OS,
as long as you remember to always check for errors. A typical me-system-specific error might occur,
for example, from attempting to save a file from a me system that normally allows saving, such as
ProDOS, to a High Siena disc. As long as your program is prepared to receive and act on any me error
that GS/OS can generate, there should be no problem. Remember also that, because different me
systeln'l have different size IimiIS on parameters, error $53 (parameter out of range) might be a very
common occurrence.

On the other band, you may needlessly restrict your application's capabilities if you assume an error
will occur when it may not. For example, if your program is written assuming a read-only file system, it

. may unnecessarily prevent a user from saving a file to a different me system that is not read-only. In
genera~ it is probably better to let GS/OS decide what file permissiOns and file calls are appropriate
and then act on the returned errors if necessary.

FurthefllX)re, what you do when an error occurs can be slgnillcant For example, if a user attempts to
save a very large me to a volume whose me system does not support the size of that file, your
application should put up a Standard Flie dialog box to let the user save the data to another me
system, rather than simply abort the save and lose the data.

194 VoIulII: 1: Applic:ltions and GS/OS Part II: The FUe System Level

8/31/88

. '.

G~OS R6/emtCI! (Volume 1) Dn1jt 3 (AlDA)

Remember also that GS/OS allows access to chaiacter devices with file calls. Therefore, calls such as
Read or SetMark may be applied to devices (like a printer) for which they have no meaning. Thus
your error-handling should allow for not only different file sysll:ms, but completely different devkes
as well. In fact, it is cOll1lOOn for chaiacter devices to rerum status information with error codes; if
your file-access routines do not check for typical chaiacter-device errors, you may lose critical
information.

FSTs and file-access optimization

The file Sf*m translators written for GSIOS are designed to make file reads and writes as fast and
efficient as possible. You may be able to read a fUe under GSIOS faster than you can under the file's
native operating system. Furtherroore, the disk caching available under GS/OS (see Chapter 11 of
Volume 2) makes reading faster still.

As much as possible, consecutive fUe blocks are written to consecutive sectors on disk for fast
access. More importantly, though, FSTs are optimized for large, multi-block transfers; for the
application writer, this means that it is best to read and wrill: data in chunks as large as possible. If
you are interested in speed, try also to avoid Newline read mode (which forces every character to be
examined in rum) and the Flush ca.ll (which is slowed by the careful checking and updating it must
perform).

For the fastest possible multiblock copying, use the GS/OS call BeginSession to temporarily defer
block writes while copying, and then EndSession to flush the cache when you are done copying.
BeginSession and EndSession are most useful when doing multiple-file copies, because directory
blocks are not written to disk as every file is copied. See the descriptions of BeginSession,
EndSession and SessionStatus in Chapter 7.

Present and future FSTs

GSIOS applications can read flies from any file system for which there is an existing, installed GS/OS
file system translator. Currently, Apple defmes the following file systems, each specified by irs own
ftle system !D. This, then, is the total list of potential FSTs:

Chapter 8: File System TranslatOrs 195

8/31/88

GSIOS Referrma (Volume 1) DmjI3 (AIDA)

File system FDe system
m DescrIption m Description

$0000 reserved $0007 USA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $OOOA MS/DOS
$0004 Apple II Pascal $OOOB High Sierra
$0005 Macintosh (MFS) $OOOC ISO 9660
$0006 Macintosh (HFS) $OOOD-$FFFF reserved

Also, as new file systeIm are defmed, Apple assigns them unique me system IDs. In theory, then, all of
the above file systems (and any future systems) can be accessed through GS/OS once FSI's are written
for them. In practice, Apple will create new FSI's as dictated by demand and time constraints. The
currently existing FSI's are described individually in subsequent chapters. FUUlre releases of GS/OS
will include file system translators for other file sysleIm.

Disk initialization and FSTs

Disk initiali.zation is a complex issue under an operating system that supports multiple file formats
and many different types of devices.

For example, a system could be configured with several FSI's. A user might wish to write anyone of
the file formats on a 3.5-inch disk ora 5.25-inch disk. Or, if a single 3.5-inch drive supports multiple
low· level formatting styles, a formatting routine might select different encoding schemes for
different file systems.

The Initialization Manager is a GS/OS routine that puts a dialog box on the screen, allowing the user
to select among valid formatting choices (given the current system configuration of FSI's and device
drivers). Once the user has made a selection, the appropriate FS1' then performs the format call and
writes the new file system.

Your application can use either the of the GS/OS calls Format or EraseDisk to initialize disks. The
format call physically formats the disk and writes out the file system; the EraseDisk call simply writes
out a new directory without formatting the disk. Either call causes the initialization dialog box to
appear; after the user makes the desired choices, the appropriate FSI' proceeds with the formatting.
For both calls, the reUlm parameter fileSysID indicates which file system (if any) the user chose.
Format and EraseDisk are described in more detail in Chapter 7 of this volume.

196 Volume 1: Applicati!Jm and GSiOS pan II: The File System Level

8/31/88

GYOS Reference (Volume I) Dmft 3 (APDA)

Use of the Initialization Manager adds a user dialog to the initialization process. Because the
Initialization Manager dialog box allows the user lD cancel, it is probably not necessary for your
application also lD make the user confmn that a fonnat or erasure is desired.

Olapter 8: File System Translators 197

8/31/88

GYOS Referrmce (Volume 1) Dmft 3 (APDA)

Chapter 9 The ProOOS FST

The ProDOS file system tr.Insiator (ProDOS FST) provides a lIansparent
application interface to the ProDOS me system. The ProDOS FST can access
any block device whose GS/OS device driver can perform 512-byte block reads
and writes.

Note: This chaprer describes only standard GS/OS (class 1) calls; for
descriptions of how the ProDOS FST handles equivalent ProDOS 16
(class 0) calls, see Appendix B.

Cllapter 9: The ProDOS FST 199

8/31/88

G~OS Referena (Volume 1) Draft 3 (APDA)

The ProDOS file system

The ProDOS file ~tem is the native ftle ~m for most of the Apple IT family of computers. All
applications that run under either ProWS 8 or ProWS 16 create and read ProWS flies (if they
create flies at all).

The ProWS file ~m is cbatacterized by a hierarchical structure, 512·byte logical blocks, 16 MB
maxirrum file size and 32 MB maximum volume size. ProWS flies are either standard (sequential)
files or directory ftles; there are no random-access, record-based file types recognized as such by
ProDOS.

ProDOS meruures can be up to 15 chal3cters long, consisting of the numerals 0-9, the uppercase
letters A-l, and the period (.), in any combination (except that the fllSt chal3cter must be a letter).
A PioWS volume name is like a mename but is preceded by a slash (f) or a colon. A ProWS
pathname consists of a sequence of slash-sepal3led ftienames, starting with a volume name.

The ProWS ftle system is described in the ProDOS 8 Technical Reference ManUilI and the Apple JIgs
P'rolJill16 Reference.

GS/OS and the ProDOS FST

The GS/os abstract ftie system described in Chapter 1 is closely related to the ProWS me system.
Therefore, the ProWS ftle ~m duplicates many features of the abstract me system exactly, and
many GS/OS ca1ls to the ProWS FST behave exactly as described in Chapter 1. Here are the principal
differences:

8/31/88

• ProWS 8 and ProWS 16 do not create or recognize extended files, equivalent to the resource forks
of Macintosh mes. However, the ProWS FST under GSIOS can store and retrieve extended files in
ProWS forma~ by defllling a new stol3ge type ($0005). When a file is stored in this forma~ a GS/OS
application can retrieve its resouroe fork and its data fork; applications under ProWS 8 and ProDOS
16, however, cannot access the me at al4 attempts to open the me result in error $4B (unsupported
storage type).

• Under GS/OS, a ProWS pathname can have either slashes (f) or colons (:) as filename separators. The
GS/OS call Manager converts both types of separators to an internal format before passing on the
pathname to the ProWS FST.

m Volume 1: Applications and G:YOS Part II: The File System Level

GYOS Refenma (YoluJM 1) Draft 3 (APDA)

• Because ProDOS flies and volumes have maxiImJm sizes smaller than those supported by GS/OS,
p:uameters related to size (such as EOF, position, blockCount, requestCount, and
transferCount) may not be accepted by the ProDOS FST if they are too large. In such cases the
ProDOS FST returns error $53 (parameter out of r.mge).

8/31/88

• Because several fIIe-entry fields in ProDOS directories on disk are smaller than their equivalent
parameters in the GS/OS calls that access file entries, the hlgh-order parts of some of those
p:uameters are always zero when a me entry is read, and nrust also be zero when a me entry is stored.
See the individual call descriptions under "Calls to the ProDOS FST."

Calls to the ProDOS FST

This section desaibes how the ProDOS FST handles certain GS/OS calls differently from the general
procedures described in Chapter 7. Calls not listed in this section are handled exactly as described in
Chapter 7.

GetDirEntry ($201C)

GetDirEntry returns me information contained in a volume directory or subdirectory entry. Under the
ProDOS FST, the following fields have limitations different from the general values permitted by
GS/OS:

fileType

EOF

blockCount

auxType

optionList

resourceEOF

resourceBlockCount

Only the low-order byte contains information.

Only the three low-order bytes contain information.

Only the two low-order bytes contain information.

Only the two low-order bytes contain information.

Not used.

Only the three low-order bytes contain information.

Only the two low-order bytes contain information.

Olapter 9: The ProDOS FST 211

GSIOS ReferetICII (Volume 1) DmjI3 (MDt\)

GetFileInfo ($2006)

GetFlIeInfo returns certain file attributes for an existing block file. Under the ProOOS PST, the
following fJdds have limitations different from the general values pennitted by GSlOS:

fileType

auxType

storaqeType

optionList

EOF

blocksUsed

Only the low-order byte contains information.

Only the two low-orrler bytes contain information.

Only the low nibble of the low byte contains information.

Not used . .

Only the three low-orrler bytes contain information.

Only the two low-order bytes contain information.

SetFileInfo ($2005)

SetFueInfo assigns certain file attribures 10 an existing block file. Under the ProOOS FSf, the
following fields have limitations different from the general values permitted by GS/OS:

fileType

auxType

optionList

Only the low-order byte can be nonzero; otherwise, error $53 (parameter out of
range) is returned.

Only the two low-orrler bytes can be nonzero; otherwise, error $53 (parameter
out of range) is returned

Not used.

ll2 Volume 1: Applications and GS/OS Part 1\: The File System Level

8/31/88

. --"

GYOS Refemta (Volume 1) D1r1jI3 (APDJI)

Chapter 10 The High Sierra FST

This chapter describes the GSiOS High Sierra ftle system translator (High Sierra
FST). The High Sierra FST provides transparent application access to compact
read-<>n1y optical discs (CD-ROM) and other media upon which High Sierra or
ISO 9660-formatted ftles may reside.

The High Sierra and ISO 9660 file formats are not documented here. See the
publications listed under aCD-ROM and the High Sierra/ISO 9660 Formats" for
more information. For information on the Apple extensions to ISO 9660, see
Appendix E.

Note: This chapter describes only standard GS/OS calls; for descriptions
of how the High Sierra FST handles equivalent GS/OS ProDOS 16-
compatible calls, see Appendix B.

Chapter 10: The High Sierra FST aJ3

8/31/88

G~as RefemlCl! (Volume 1) Draft 3 (APD1\)

CD-ROM and the High Sierra/ISO 9660 formats

COmpad discs provide a new and promising method of information storage and retrieval. Compact
discs can hold vast alOOUnts of information on a medium that is durable and inexpensive to
manufacture. The infonnation can be played back using existing, well~tablished technology based
on CD music playelS.

A single CD-ROM disc holds about 550 megabytes of infonnation. This large capacity is CD-ROM's
main advantage, but it comes at a price. Compared to magnetic disk drives, CD-ROM playelS have
much slower access times; it can take up to one second to flOd a byte of information on a CD-ROM
disc, compared to less than a tenth of a second on a large<apacity bard disk.

CD-RaM's biggest disadvantage, however, is that-at present-its optical storage technology is
read-{)nly. UselS can read from a CD, but they cannot write to it (hence the name CD-ROM).

The High Sierra Group format (named for the location of an ad-hoc committee's original meeting
place) and the ISO 9660 format (the International Standards Organization's velSion of High Sierra)
are two nearly identical CD-ROM file fonnalli that support the large files a compact disc can hold.
They also simultaneously attempt to minimize the penalties caused by slow access. Here are some of
the highlights of the formalli that are relevant to GS/OS:

• Logical sectolS contain 2048 bytes (2 KB) of data. A logical sedor can contain 1, 2, or 4 logical
blocks.

8/31/88

• Files can contain data in any form or for any purpose; High SierralISO 9660 specifies nothing about
me contents.

• File identifielS can consist of three parts: a mename, a filename extension, and a version number.
Directories have the mename pan onJy. Nondirectory files under High Sierra need one or more of the
three parts (except that a file cannot be identified by a version number alone). Under ISO 9660, a
nondirectory file must include all three parts.

The filename is 0 or IOOre characters (uppe=e A-Z, dlgilli 0-9, or undelSCore); it must be followed
by a period. The filename extension is 0 or more charactelS, and it must be followed by a semicolon.
The velSion number is one to six digits. The sum of the fIlename and extension must be between 2
and 31 characters, including the period. Under ISO 9660, then, a minimum legal file name is something
like ·A.;1' or' .A;1'.

4D4 Volume 1: Applicalions and GS/OS Part II: The FUe System Level

GYOS Referrma (Volume 1) D1rJfI3 (APDA)

Note: See the section' Apple Extensions to ISO 9660; later in this chapter. for information on
how to devise High Sierra/ISO 9660 filenames that are transformable to other file
systems with different conventions.

8/31/88

• High SienalISO 9660 is hieran::h.icaI; files may be placed in subdirectories. To speed access to files
deep within subdirectOries, there is a Path Table that can be loaded into RAM for fast searching; it is
an index to all subdirectories on disc. In addition, directory entries are kept small (and therefore fast
to sean:h) by putting auxiliary directory information-such as creation dates and access
permissions-into extended attribute records (XARs), stored separately.

• Both ISO 9660 and High Sierra support associated flies (equivalent to resource forks <i GS/OS
extended flies); however, the High Sierra PST supports associated ftles for ISO 9660-formatted files
only.

• High Sierra/ISO 9660 supports hidden flies.

The High SienalISO 9660 format from which Apple's High Sierra FST was designed is defined in these
two documents:

• Working Paper for Infomration Processing-Volume and File Sl7Ucture of compact Read-Only Optical
Discs for InformaJlon Inlerchange, published by the CDROM Ad Hoc Advisory Committee. May 28,
1986. This is the original High Sierra Group proposal.

• ISO 9660: Infomration POrc:essing- VciUtne and File Structure of CD-ROM for Informatton
Interchange, ftrst edition, 1988. This is the ISO 9660 standard, a slightly modified version of the High
Sierra Group formal

Non-CD-ROM implementation: Although High Sierra and ISO 9660 were developed specifically for
compact disc storage, nothing in either format requires the files to be on CD-ROM. It is
possible to have High Sierra/lSO 9660 files on essentially any storage medium that can
be formatted to accept them

I.imitations of the High Sierra FST

In translating ftle calls back and forth between CD-ROM drivers and GS/OS, the High Sierra FST
cannot support all aspectS of the High SierralISO 9660 file system, nor can it meaningfully implement
all GSiOS application calls. The High Sierra FSf provided by Apple has the following features:

• It supports associated files (GS/OS extended files) for ISO 9660-formatted discs only.

• It pennits only a single volume descriptor-the Standard File Structure Volume Descriptor- per
physical volume.

Chapter 10: The High Sierra FST ~

GYOS Refmma (Volume 1) Dmft 3 (APDA) 8/31/88

• It does not support multi-volume sets (named and logically linked groups of volumes occupying more
than one disc).

• It does not support multi-extent files (files occupying more than one disc).

• It does not support /3lIdom-access, record-based files; that is, it can read such files as streams of
bytes, but it cannot access individual records directly

• It maps the existence bit of the file flag5 into the invisibility bit of the GS/OS access word.

• It ignores the file pennissions fIeld in the extended attribute record.

• It is a read-only implementltion.

This last limitltion imposes strong resuictions on GS/OS system calls that write data to the disc:
those calis always return a write-protect error, after identifying that the me or device requested is
present and is in High Sierra or ISO 9660 formal

In accessing fties on a CD-ROM disc, retnember tha~ under High Sierra or ISO 9660, block size is not
fixed across volumes. If necessary, you can use the GSiOS Volume call to get the block size for a
particular volume. Block counts returned by other calls are always in terms of blocks of the size
returned by the Volume call.

An associated file in ISO 9660 is analogous to the resoulCe fork of a GSiOS extended me. If an ISO
9660 fUe named MyFiJe has an associated ftie, the associated ftie has these clwacreristics:

• It is also named MyFile (its file identifler is identicaO.

• Its associated bit (in the file flag5 byte of the directory record) is set.

• Its directory entry resides immediately before the other MyFile's directory entry.

Thus, GSiOS refers to the fIrst MyFile (whose associated bit is set) as the resource fork of the
extended file MyFile, and the immediately foUowing MyFile (whose associated bit is clear) as the
data fork of MyFile. Only data fties can have assodated nIes; directories cannot.

File types: High Sierra!ISO 9660 does not provide an explidt fIle typing convention. This can be a
problem because many applications select a particular file type as a filter when caUing
the Standard File ToolSet to display fties to the user. In such a case, files from a High
Sierra/ISO 9660 disc would never be selectable.

:n; Volume 1: Applications and GSiOS Pan n: The File System Level

GSiOS RefemlCl1 (Volume 1) Dmfl3 (APDA)

To remedy this problem, the High Sierra FST, through the call FSTSpecific, defines and
implements a convention by which High Sierra/ISO 9660 filenames can be used to
convey file type information. See the discussion under 'FSTSpecific", later in this
chapter. In addition, Apple has deflned a prorocol that extends ISO 9660 to store file
type and other information needed by either ProOOS or Macintosh HFS flles. See the
next section • Apple Extensions to ISO 9660".

Apple extensions to ISO 9660

To facilitate the transformation of ProOOS flles or Macintosh HFS flles to ISO 9660 files on CD-ROM
without loss of needed ProOOS or Macintosh file information Apple has defined a protocol that
extends the ISO 9660 specifICation. Discs created using the Apple extensions are valid ISO 9660
discs, and retain the filellalre as well as the filetypelauxiliary type (ProOOS) or
filetype/creator/bundle bit/icon resource (Macintosh) information needed to reconstruct the
original files from which they were made.

Because ISO 9660 does not provide for file typing and icons, the eXtt:! information is stored in a
special data structure in the file's directory record. Filenames are preserved through transformations
of ProOOS or Macintosh filenames to valid ISO 9660 IlaIreS, and back again.

This section does not discuss the protocol in detail. Please see Appendix E, • Apple Extensions to
ISO 9660;

if you need to create or work with ProOOS or Macintosh files stored as ISO 9660 files. Here are the
main highlights of the protocol:

8/31/ 88

o Tbt Protocolldentltkr: The protocol identifier consists of 32 bytes in the systemIdentifier

field of the Standard Volume Descriptor of an ISO 9660 volume. It is the characters "APPLE

COMPUTER, INC., TYPE: • followed by 4 bytes of prorocol flags. The current version of the
type description gives the version number of the protocol and indicates whether the disc's files
should be transformed to ProOOS file names when read.

The presence of the protocol identifier indicates that the Apple extensions have been applied to the
disc's files .

o Tbt system.Use field: The systemUse field in the file's directory record is an optional field. The
Apple extensions use that field to store the extra file information. If the systemUse field is presen~
and if it begins with the proper signature word, the subsequent information in the field can be
interpreted as ProOOS or Macintosh HFS information.

Olapter 10: The High Sierra m 2!JI

GS'OS Refmna (VolwM 1) Drr.zjI3 (APDA) 8/31/88

o ProDOS flIename transformations: If you (through an authoring tool) are creating ISO 9660 files
from ProOOS files, you can IIansform ProOOS filenames to valid ISO 9660 filenaox:s in such a way
that \lSeIli (through a receiving system) can access the files using their original ProOOS filenames. Do
this:

1. Replace all periods in the ProOOS filell3lre with underscores. If the file is a directory fLle, that
completes the IIansformation.

2. If the file is not a directory fLle, append the characters ' .; I' to the filename. It is now a valid ISO
9660 filename.

In use, the receiving system peIforms the above tranSformation on user-supplied fLlenames before
searching for them on disc and reverses the IIansformation before presenting filenames to the user.

If the uansformation is to be done, it must be applied to all files on a disc.

o HFS mename transformations: Unlike with ProOOS, it is not possible to make a simple,
reversible tr.InSformation from all valid Macintosh HFS filenames to valid ISO 9660 filenames. To
make the transformation as consistent as possible, however, Apple recommends these guidelines:

1. Conven all lowercase characters to uppercase.

2. Replace all illegal characters, including periods, with underscrores.

3. If the fUell3lre needs to be shortened, truncate the righl!OOst characters.

4. If the file is not a directory file, append the characters '.;1" to the filename.

Such a transformation is not perfectly reversible, but its results are at least consistent across all fLIes
and discs.

High Sierra FST calls

Table 1{}-1 lists all the GSIOS system ca11s supponed by the High Sierra FSf. Those in colu1lUl 1
perform meaningful tasks; those in colu1lUl2 always return an error (with the exception of Flush; see
the call description).

Table l{}-l High Sierra FST calls

Meaningful Not meaningful

$2006 GetFilelnfo

$2008 Volume

;m Volume I: Applications and GSiOS

$2001 Create
$2002 Destroy

Part ll: The File System Level

GS'OS Xefl!mlCe (Voo'ume 1) Dmft 3 (APDA)

$2010 Open $2004 ChangePath

$2012 Read $2005 SetFilelnfo

$2014 Close $2013 Write

$2016 SetMark $2015 Flush

$2017 GetMark $2018 SetEOF

$2019 GetEOF $200B ClearBackupBit

$201C GetDirEntcy $2024 Format

$2020 GetDevNum $2025 EcaseDisk

$2033 FSTSpecific

With the exception of Flush, all the calls on the right side of Table 10-1 do nothing and rerum error $2B
(write-protected). Flush aiso does nothing, but it returns with the carry flag cleared (no error).

The following sections describe how the High Sierra FSrs handling of some of the calls listed on the
left side of Table 10-1 differs from standard GS/OS practice, as documented in Chapter 7. Calls listed
on the left side of Table 10-1 that are not described below are handled exactly as documented in
Chapter 7. Refer also to Chapter 7 for complete explanations of the calls and paramete!5 listed here.

GetFneInfo ($2006)

GetFileInfo returns certain attributes of an existing block file. The me may be open or closed.

Parameter differences

access

fileType

modDateTime

auxType

The only possible values for this parameter under High Sierra/ISO 9660 are $01
(read-permission only) and $05 (read-permission only, me invisible).

This output word value equals $OOOF if the me is a directory; otherwise, it is
$0000 (unknown~ess the filename extension matches an entry in the me
type mapping table. See Appendix E 'Apple Extensions 10 ISO 9660"; see also
the call FSTSpecific, described later in this chapter.

This output double Iongword value always has the same value as
createDateTime.

This output long word value is always $0000 unless the Apple extensions 10 ISO
9660 have been applied. See Appendix E.

Chapter 10: The High Sierra FST '][J)

8/31/88

GYOS Referma (Volume 1) Draft 3 (APDA)

option List

Errol'S

This is a longwold input pointer 10 a data area to which results can be returned.
If an Extended Attribute Recold (XAR) exists for the ftle, the High Sierra FST
returns the contents of the XAR in the data area pointed to. If an XAR does not
ftt in the allotted space, the High Sierra FST returns as much of the data as
possible and generates error $4F (buffer 100 small).

In addition to the standald GSIOS GetFileInfo errors, the High Sierra FST can return these errors from
a GetFileInfo call:

$4F buffer 100 small

Volume ($2008)

Given the name of a block: device, Volwne returns the name of the volunr lOOunted in the device and
other information about the volunr.

Parameter differences

freeBlocks

fileSysID

Open ($2010)

This Iongwold output value is aways $0000.

This wold result value describes the fIle system of the volume being accessed.
For High Sierra, fileSysID • $OOOB; for ISO 9660, fileSysID • $OOOC. If
any other type of volunr is accessed, the High Sierra FST returns error $52
(unsupported volunr type).

This call causes the FST 10 establish an access path to a me. Once an access path is established, the
user may perfonn me reads and other related operations on the file.

A fIle can be opened IOOre than once as long as it is not opened for write access, and each open
assigns a different reference number. Because High Sierra/ISO 9660 files are read-only, it is always
possible 10 have multiple open copies of a docunrnt

Parameter differences

210 Volume 1: Applications and GSiOS Part IT: The File System Level

8/31/ 88

G~OS Ref_ (Volume 1) DrtljI3 (APDA)

requestAccess If this word input parameter is included, and if ill; value is anything other than
$0000 (use default pennissions stored with file) or $0001 (read-access
requested), the High Sierra FST returns error $4E (access not allowed).

fileType This word output value equals $OOOF if the file is a directory; otherwise, it is
SOOOO (unknown~ the ftlename extension matches an entry in the me
type mapping table. See Appendix E • Apple Extensions to ISO 9660"; see also
the FSTSpedfic call, described later in this chapter.

auxType This Iongword output value is always SOOOO unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

modDateTime This double longword output parameter always has the same value as
createDateTime.

optionList

fileType

auxType

Errors

This is a Iongword input pointer to a data area to which results can be returned ..
If an Extended Attribute Record (XAR) exists for the file, the High Sierra FST
returns the contents of the xAR in the data area pointed to. If an XAR does not
fit in the allotted space, the High Sierra FST rerurns as much of the data as
possible and generates error $4F (buffer too smalO.

This output word value equals $OOOF if the file is a directory; otherwise, it is
$0000 ("unknown")-unies.l' the filename extension matches an entry in the file
type mapping table. See Appendix E 'Apple Extensions to ISO 9660"; see also
the call FSTSpecific, described later in this chapter.

This output long word value is always $0<XXl unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

In addition to the standard GS/OS Open errors, the High Sierra FST can return this error from an Open
call:

$4F buffer too small

Read ($2012)

This call attempts to transfer the requested number of bytes, staning at the current mark, from a
specified file into a specified buffer. The file mark is updated to reflect the number of bytes read.

Chapter 10: The High Sierra FST 211

8/31/ 88

GYOS RefmmcJI (Volume 1) Drtzft 3 (APOO

The High Sierra FSI' allows applications to read directory flies as well as data fIles (but only with
standa!d GSiOS calJs; ProDOS 16 Read calJs to directories return error $4E_ccess not allowed).
Even so, as a reminder that directory structures differs for different file systems, the High Sierra FSf
always returns a 'caution' error ($66) after a successful read of a directory.

Also, the High Sierra FSI' does not allow Read calJs and GetDirEntry calls with the same fIle reference
number: if an open file has previously been accessed by GetJ)irEncry, and a Read call is made with the
same reference number, the High Sierra FSI' returns error $4E (access not allowed). To avoid that
error, open the directory twice.

Errors

In addition to the stand:ud GSiOS Read errors, the High Sierra FSf can return this error from a Read
call:

$66 FSI' Caution

GetDirEntry ($201C)

This call returns information about a directory entry in the volume directory or a subdirectory.
Before executing this call, the application must open the directory or subdirectory. The call allows
the application to step forwaro or backwald through me entries or to specify absolute entries by
entry number.

The High Sierra FSI' does not allow Read calls and GetDirEntry calls with the same file reference
number: if an open me has previously been accessed by Read, and a GetDirEntry call is made with the
same reference number, the High Sierra FST returns error $4E (access not allowed). To avoid that
error, open the directory twice.

Parameter dHIerenccs

fileType

modDateTime

auxType

This output wold value equals $OOOF if the file is a directory; otherwise, it is
$0000 (unknown}-unless the filename extension matches an entry in the me·
type mapping table. See Appendix E 'Apple Extensions to ISO 9660"; see also
the FSTSpecific call, described /ater in this chapter.

This double longwold output parameter always has the same value as
createDateTime.

This Iongword output value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

212 VoIulll: 1: Applications and G&lOS pan IT: The File System Level

8/31/88

GYOS Refmma (Volume 1) Draft 3 (APDt\)

fileSysID

optionList

Errors:

This word result value describes the file system of the directory being accessed
For High Siem, fileSysID • $OOOB; for ISO 9660, fileSysID • $OOOC. If
any other type of directory is accessed, the High Siem FST rerurns error $52
(unsupported volume type).

This is a longword input pointer to a dara area to which results can be rerumed.
If an Extended Attribute Record (XAR) exists for the me, the High Sierra FST
returns the contents of the XAR in the data area pointed to. If an XAR does not
fit in the allotted space, the High Siem FST returns as much of the data as
possible and generates error $4F (buffer too smalO.

In addition to the standard GSiOS GetDirEntry errors, the High Sierra FST can rerum this error from a
GetDirEntry call:

$4F buffer too small

Chap!er \0: The High Sierra FST 213

8/31/88

GYOS RtfemICII (Volume 1) Dn/ft 3 (APD,v

$2033

Note:

Description

pcount

FSTSpecific

FSTSpecific ~ a call that ~ not described with the rest of the GS/OS calls in
Chapter 7. Its function can be defined individually for any flIe system
translator.

The High SiernI PST uses the call FSTSpecifIC to control file-type mapping. That
~, it siJmJlates file types in High SietralISO 9660 files (which do not have flIe
types) by mapping ftlename extensions to specific GS/OS ftle typeS.
FSTSpeciflC maintains a table in memory that controls which extensions
correspond to which file typeS.

The default table contains only two entries; it equates flIenames with extensions
of . txt and . ba t to GS/OS file type $04 (text me).

FSTSpecific uses a command number as one of its parameters and therefore
functions as four different calls. The four calls are:

MapEnable
GetMapSize
GetMapTable
SetMapTable

Enables/d~ables flIe-type mapping
Returns size, in bytes, of current file-type map
Returns the current file-type map
Replaces the current file-type map

Note: This mapping is independent of and unrelated to the file-typing
implemented by the Apple extensions [0 [SO 9660 described in
Appendix E.

This is the FSTSpecific parameter block:
0fIiet No. Sill: and type

f- pCount - Word tNPUT value minimum = 3)
$(X)

S02 f- fileSysID - 1 WOld tNPUT value

f- commandNwn - 2 Word tNPUT value
.

: 3 (subcall-speciftc parameter)

Word input value: The number of parameters in this parameter block. Minimum
- 3; maximum - 3.

214 Volume 1: Applications and GSiOS Part II: The File System Level

8/31/88

GSIOS Refmmce (Volume 1) DruJl3 (APDA)

fileSysID

commandNum

Word input value: The me system ID of the FSf to which the call is directed.
For High Sieml, fileSysID - $OOOB; for ISO 9660, fileSysID - $OOOC.

Word input value: A number that specifIeS which particular subcall of
FSfSpecific to execute, as follows:

subcall commandNum

MapEnable $0000
GetMapSize $O(J()l

GetMapTable $0002
SetmapTable $0003

See the individual subcall descriptions later in this chapter.

(subcall-specific) Word or longword input or result value: Depends on the specific subcaJI; see the
individual subcall descriptions later in this chapter.

Errors $04
$53
$54

par.uneter count out of range
invalid par:!meter
out of memory

What a map table is
The map table is the data structure that records which filename extensions are
to be assigned to which filerypes. The format of a map table is as follows:

Olapter 10: The High Sierra PST 215

8/31/88

GS'OS Re{11mf,(2 (Volume 1) DrrJft 3 (APDAJ

mapTable
de
de

end de

:t mapSize j J.ensth ri table, ioduding termina10r

first map record (wrlabIe lenadV
: record 0

[J Next map record

: record 1 : .

r l
L J

WI map record

record n Terminator (zero byte)

r $00 j
A map record consists of a text string (with MS& off) followed by a zero byte
followed by a file type byte. The text string can be any length and can include
any legal characters for a High Sierra filename (text must be uppercase, for
example). In APW assembly language, a map table can be defmed as follows:

de i2'end-mapTable+l'
c' .TXT' ,h'Oa 04' ;Record O.
c' . TYPE , ,hlOa 7f' ;Record 1.
hlOO' ; Ter.minator.

;Length of table.

MapEnable (FSTSpecific subcall)

The MapEnable subcall toggles me mapping on or off.

Parameters This is the FSTSpecific parameter block for the MapEnable subcall:

216 Volurre 1: Applications and GSiOS Part 11: The File System Level

8/31/88

GYOS Referena (Volume 1) Dmfl3 (APDA)

commandNum

enable

soo r pCount -

I- fileSy.ID -

- conmandNum -
.... Ml&,ble -

The following parameters have particular values for this subcall.

For MapEnable, conunandNum - $0000.

Word input value that equals either $0000 or $0001. If enable - $O()()(), me
type mapping is disabled. If enable - $00)1, me-type mapping is enabled.

GetMapSize (FSTSpecific subcall)

The GetrnapSize subcall returns the size of the ament me map.

Parametcrs This is the FSTSpecific parameter block for the GetMapSize subcaU:

soo I- pCount -

r fileSy.ID -S02

I- conrnanciNum -

I- mapSize -$06

The following parameters have panicular values for this subcall.

commandNwn For GetMapSize, c ommandNurn ~ $0001.

mapSize Word result value that is equal to the size (in bytes) of the current map table.

GetMapTable (FSTSpecific subcall)

The subcaJI GetMapTabJe returns a pointer to the current map table.

Chapter 10: The High Sierra FST 217

8/31/88

GYOS Referenu (Volume 1) Druft 3 (APDA)

Parameters This is the FSTSpecific parameter block for the GetMapTable subcall:

soo - pCount -
$02 - fileSysID -

- coumandNum -
$06 - -

f- buff.rPtr -
r- -

The following parameters have panicular values for this subcall.

commandNum For GetMapTable, commandNum - $0002.

bufferptr A longword input pointer to a memory area large enough to hold the map table
that will be returned by the call.

SetMapTable (FSTSpecific subcall)

Parameters

cornmandNum

The subcall SetMapTable sets the current map table to the one pointed to by the
input pointer.

This is the FSTSpecific parameter block for the SetMapTable subcall:

soo - pCount -
$02 - fileSysID -

- conmandNum -
$06 - -

- mapPtr -
- -

The following parameters have particular values for this subcall.

For SetMapTable, commandNum· $0003.

218 Volume 1: Applications and GSiOS Part II: The File System Level

8/31/88

G£'ill Refmmce (Volume 1) D1IJjt 3 (APDA)

mapPtr Longword input pointer to the new map table. As long as there is space in
memory for the new table, it will replace the old one. If there is not enough
space, error $54 (out of memory) is returned and the original table remains in
effect No validity checking is done on the table.

Chapter 10: The High Sierra FST 219

8/31/88

GS'OS Reference (Volume 1) DmjI3 (AJ'DA)

Chapter 11 The Character FST

The Character me system translator (Character FS1') provides a me-system-like
intelface to character devices such as the console, printers, and modems. The
Character PSI' works with both generated and loaded drivers.

Note: This chapter describes only standard GS/OS (class 1) calls; for
descriptions of how the Character FST handles equivalent ProDOS
16 (class 0) calls, see Appendix B.

Chapler 11: The Q13Iaaer FST 221

8/31/88

GS/OS" Referrma (Volume 1) Drafl3 (APDA)

Character devices as rues
The Character FST eanbles applications to read from and write to character devices as if they were
fLIes . That is, your application can open, read, write, and close a printer, modem, console, or other
character device in a manner exacdy analogous to penonning those actions on a fLIe on a block
device.

Not all GS/OS ca& can be made to character devices, of course, and those that do may not always
function exactly the same as for block devices. This chapter discusses those calls that do apply to
character devices and notes any character-device-specific features they have.

Note: Although GS/OS lets you treat character devices as files in some ways, you cannot create,
destroy, or rename character fLIes with GS/OS calls. The system and the user control the
existence and the names of character devices

The Character FST allows multiple Open calls, with both read- and write-access, to a character fLIe.
Block-<levice FSTs, on the other hand, can allow multiple Opens for read-access only.

Character FST calls

The Character FST supports this subset of GS/OS calls:

Open
Newline
Read
Write
Close
FIus!l

All other GS/OS calls relUlll error $58 (Not a block device).

The following descriptions explain ilow the Character PST responds to some of these calls differently
from the standard procedures documented in Chapter 7. Any of the supported calls not described
here function exactly as documented in Chapter 7.

ZI2 Volume 1: Applications and GSiOS Palt II: The File System Level

8/31/88

. ""

GYOS Reference (Volume J) D1rJft 3 (APDA)

Open ($2010)

Open establishes an access path to a character file. With the reque~tAcces s parameter, an
application can request limited access rights to the character file .

Parameter dUJerences

pCount Maximwn value· 3. Unlike with block devices, you cannot use the Open call to
a character device to get information normally retwned by GetFilelnfo.

pathname This input pointer must point to a chancter device name. ·

reque~tAccess The following values are allowed:

$00 open with available permissions
$01 open for read-access only
$02 open for write-access only
$03 open for both read- and write-access

Errors

In addition to the standard GS/OS Open errors, the Character FST can return these errors from an
Open call:

$04 pCount error
$24 driver prior open
$26 driver no resources
$28 driver no device
$2F driver off line
$54 out of memory

Read ($2012)

The Read call attempts to transfer the requested number of bytes from the specified character file
into the application's data buffer.

Parameter dlff'erences

pCount MinilllilIIl is 4; maximum is 4.

cacheP riori ty Not used. Data transfers with character devices are not cached.

Chapter 11: The Chara<1er FST 223

8/31/88

GS'OS Referent;/! (Volume 1) Draft 3 (AIDA)

Errors

In addition to the standan:i GS/OS Read errors, the Character PST can rerum these errors from a Read
call:

$04 pCount error
$23 driver not open
$2F driver off line
$53 parameter out of range
$54 out of meJOOry

Write ($2013)

The Write call attempts to transfer the requested number of bytes from the application's data buffer
to the specified character me.

Parametl:r differences

pCount Minimum is 4; maximum is 4.

cachePriority Not used. Data transfers with character devices are not cached.

Errors

In addition to the standard GS/OS Write errors, the Character FST can return these errors from a Write
call:

$04 pCount error
$23 driver not open
$2F driver off line

dose ($2014)

The Close call terminates access to the specified (by refNwn) character file. Close also involves
flushing the file (see the Flush call), to ensure completion of all data transfer before a character me is
closed.

Z24 Volume 1: Applications and GSiOS Part II: '!be FUe System Level

8/31/88

G~OS Referena (Volume 1) Draft 3 (APDA)

Errors

In addition to the standard GS/OS Close ernxs, the Character FSI' can return these errors from a Close
call:

$04 pCount error
$23 driver not open
$2F driver off line

Flush ($2015)

The Flush routine completes any pending data transfer to the character me specifed by refNum. if
the character device is synchronous, all data transfer is by definition completed when the Write call
returns, so the Flush routine simply rerurns with no error. If the device is asynchronous (such as
interrupt-<!riven or direct memory access), the Flush routine waits until all data has been transferred
and then rerurns. If the file is multiply opened, all (output) access paths to the character file (not just
the one with the specified re!Num) are flushed.

Errors

In addition to the standard GS/OS Flush ernxs, the Character FST can return these errors from a Flush
call:

$04 pCount Error
$23 Driver not open
$2F Driver Off Line

Chapler 11: The Charaaer FST 225

8/31/88

G:lOS RefermaJ (Volume 1)

Appendixes

Volwnel

Volwne2

Dm[I3 (APDA)

Part I

GSIOS ails
(.. cept device ails)

(Chapter])

Pm I

GS/OS device ails

----------Driver-specific
information on

GS/OS device ails

Part II

FST .. peclic
infonnation on

GS/Osalls
(<hpter ~l\)

Part II

Driver ails -------
System service aI1s

8/31/ 88

Appendixes

Sysrem I=ler ails
(Appendix B)

GYOS Referrma (Volume 1) DrrJft 3 (APDA)

Appendix A GS/OS FroDOS 16 Calls

This appendix provides a derailed description of all the GS/os ProDOS 16 calis,
arranged in alphabetical order by call name. These calls are provided only for
compatibility with ProDOS 16. For the standaJd GS/OS calls, see Chapter 7,
"GS/OS Call Reference; in Pan I of this manual.

The descriptions in this appendix follow the same conventions as those for the
standard GSIOS calls.

Appendix A: GSiOS ProDOS 16 Gills W

8/31/88

GYOS Refemra (Volume 1) Dmft 3 (APDA)

$0031

Dcsc:ripdon

Parameters

intNum

intCode

Errors

This function places the address of an interrupt handler into GS/OS's interrupt
vector table.

For a complete description of GS/OS's interrupt handling subsystem, see
Volume 2. See also the DEAllOC_INTERRUPT call in this appendix.

Offset Sl2lt and type

intNWII - Word III!SULT value

intCode - Longword INPUT poinrer

. Word result value: An identifying number assigned by GS/OS to the the binding
between the interrupt source and the interrupt handler. Irs only use is as input to
the DEAllOC_INTERRUPT call.

Longword input pointer: Points to the first instruction of the interrupt handler
routine.

$25 interrupt vector table full
$53 parameter out of range

a> Volume 1: Applications and GS/OS Appendixes

8/31/88

GS/OS Reference (Volume I) D1aft 3 (APDA)

$0004

Descripdon

Parameters

pathname

newPathname

Comments

'Ibis call changes a me's pathname to another pathname on the sam: volume, or
renalreS a volume.

CHANGE_PATIi cannot be used to change a device name. You must use the
configuration program to change device names.

Offset Size and type

$00
f- -
I- pathname - I.ongword INPlIT pointer
I- -

S04
r -
r newPathname - I.ongword INPlIT poinler
~ -

Longword input pointer: Points to a Pascal string that represents the name of
the me whose pathname is to be changed.

Longword input pointer: Points to a Pascal sUing that represents the new
pathname of the file whose nam: is to be changed.

A me may not be renam:d while it is open.

A me may not be renam:d if renam: access is disabled for the me.

A subdirectory 5 may not be moved into another subdirectory t if s - t or if t is
contained in the directory hierarchy starting at s. For example, "rename Iv to
Iv/w" is illegal, as is "rename Iv/w to Iv/w/x".

Appendix A: GS/OS ProDOS 16 Calls 231

8/31/88

GYas Re/erenu (Volume 1) D1ajI3 (APDA) 8/31/88

-~

Errors

$10 device not found
$27 VO error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 me not found
$47 duplicate pathnarne
$4A velSion error
$4B unsupported storage type
$4E access: me not destroy-enabled
$50 me open
$52 unsupported volume type
$53 invalid parameter
$57 duplicate volume
$58 not a block device
S5A block number out of range

232 Volume 1: Applications and GSiOS Appendixes

GYOS Re/ereflCI (Volume 1) DrrIft 3 (APDA)

$OOOB

Dcscrlpdon

Parameters

pathname

Etron

This call altelS a fIle's state information to indicate that the file has been backed
up and not altered since the backup. Whenever a me is altered, GS/OS sets the
me's state information to indicate that the file has been altered.

-

Offset

$001-

l
I-

pathname
- Longworrl lNPlIT power
-

Longword input pointer. Points to a Pascal string that gives the pathnarne of the
me or directory whose backup starus is to be cleared.

$27 I/O error
$28 no device connected
$2B write-protected disk
$2E disk sWitched
$40 invalid pathname syntax
$44 path not found
$45 yolWIle not found
$46 fIle not found
$4.\ velSion error
$52 unsupported volume type
$58 not a block device

Appendix A: GSiOS ProOOS 16 C1Ils 233

8/31/88

GS'OS Reierrmce (Volume 1) Draft 3 (APDA)

$0014

Descrlpdoll

Parameters

fileRefNum

Errors

CLOSE

This call closes the access path to the spedfied me, releasing all resources used
by the file and tenninating further access to it. Any file-related information that
has not been written to the disk is written, and memory resident data structures
associated with the file are releaSed.

If the specified value of the fileRefNWII parameter is $0000, all mes at or
above the cwrent system me level are closed.

Offset Size :&lid type

$00 E fileR.mum J word INPtrr V21ue

Word input value: The identifying number assigned to the me by the OPEN call.
A value of $0000 indicates that all ftles at or above the current system ftle level
are to be closed.

$27 VO error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
S5A block number out of range

~ Volurre I: Applicalioos and GS/OS . Appendixes

8/31/88

GY05 RefemlCl! (VolutM 1) DtrJ{I3 (APDA)

$0001

Description

Parameters

pathname

CREATE

This call creates either a standaro file, an extended fLle, or a subdirectory on a
volume mounted in a block device. A standanl file is a ProDOS-like fLle
containing a single sequence of bytes; an extended fde is a Macintosh-like fLle
containing a data fork and a resource fork, each of which is an independent
sequence of bytes; a subdirectory is a data structure that contains information
about other fLIes and subdirectories.

This call cannot be used to create a volume directory; the FORMAT call performs
that function. Similarly, it cannot be used to create a cilaracter-device fLle.

This call sel5 up file system state information for the new file and initializes the
fLle to the empty state.

OCIut Size 2nd type

soo
I- -
I- pathname - Longword INPtIT pointer
r- -
I- [Access - Word INPtIT value

I- fileType - Word INPtIT value

r- -
I- auxType -
I- - Longword INPtIT value

c- .stor5qeType -soc
Word INPtIT value

- createDate -$OE
Word INPtIT value

- createTima -$10
Word INPtIT value

Longworo input pointer: Poinl5 to a Pascal string representing the pathname of
the me to be created. This is the only required parameter.

Appendix A: GS/OS ProOOS 16 Calls 235

8/31/88

GSiOS Refemu:tl (Volume 1) D1r1jI3 (APDJ\J

fAeces:!

file'l'ype

auxType

storage Type

Word input value: Specifies how the me may be accessed after it is created and
whether or not the file has changed since the last backup.

Wri~biI

Reod~lebil

The most common setting for the access word is $OOC3.

Software that supports file hiding (invisibility) should use the I bit to indicate
whether or not to display a me or subdirectory.

Word input value: Used conventionally by system and application programs to
categorize the file's contents. The value of this field has no effect on GS!OS's
handling of the me, except that only certain file types may be executed directly
by GS!OS. Many me types have already been standardized by Apple, as listed in
Table 1·2 in Chapter 1.

Longword input value: Used by system and application programs to store
additional information about the me. The value of this field has no effect on
GS!OS's handling of the Hie. By convention, the interpretation of values in this
field depends on the value in the f ileType field. Many auxiliary types have
been standardized by Apple, as listed in Table 1·2 in Chapter 1.

Word input value: The value of this parameter determines whether the file being
created is a standard fIle, extended me, or subdirectory me, as follows:

$()()()()..$0003'
$0005
$OOOD

create a standard me
create an extended me
create a subdirectory fIle

All other values are invalid.

'If this field contains $0000, $0002 or $0003, GS!OS interprets it as $0001 and
actually changes it to $0001 on output

236 VoIu!re 1: Applic31ions and GSiOS Appendixes

8/31/88

GS/OS Referl!rlCJ! (Volume 1) DiajI 3 (APDA,)

createDate

createTime

Comments

Word input value: This panmeter specifies a date that GS/OS saves as the ftle's
creation date value. If this word is $0000, GS/OS gets the date from the system
clock.

115114 113112111110 I 9 I 8 I 7 I 6 1 5 I 4 1 3 I Z II I 0 1
yeat(l-I90I,2-~90Z, ...) J I T

month (I-JanIlllY, 2-F.bruary, ...)

day d. ~ I1lOIIh (1,2, ... ,31)

Word input value: This parameter specifieS the time that GS/OS saves as the
file's creation time value. If this word is $0000, GSiOS gets the time from the
system clock.

1151 14113112111110 I 9 I 8 I 7 I 6 I 5 14 1 3 I 2 II I 0 I

~:rJ
o

min"'" (0-59)

The CREATE call applies only to ftles on block devices.

The storage type of a file cannot be changed after it is created. For example,
there is no direct way to add a resource fork to a standard ftle or to remove one
of the forks from an extended file.

All FSTs implement standard files, but they are not required to implement
extended files.

Appendix A: GSiOS ProDOS 16 Calls ?3l

8/31/88

GYOS Referena (Volume 1) Drafl3 (APDA)

Errors

$10 device not found
$27 I/O enor
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$47 duplicate pathname
$48 volume full
$49 volume directory full
$4B unsupported storage type
$52 unsupported volume type
$53 invalid parameter
$58 not a block device
$5A block number out of range

Z38 volu~ 1: AppIicI1ions and G&'OS

8/31/88

Appendixes

GYOS Reference (Volume l) Dn1/I3 (APJJ..4)

$0032

Description

Parameters

intNum

Errors

DEALLOC_INTERRUPT

This function removes a specified interrupt handler from the interrupt vector
tlble. See also the ALLOC_INTERRUPT call in this appendix.

Offset Six iUId type

$OOf ,-__ 1_nt_N_Ulft __ -,1 Word INPUT V21ue

Word input value: Interrupt identification number of the binding that is to be
undone between interrupt souIt:e and interrupt handler.

$53 parameter out of range

Appendix A:. GS/ai ProDOS 16 G!l1s 'l3J

8/31/88

GSIOS Referrma (Volume 1) Drafl3 (APDA)

$0002

Description

Parameters

pathname

Comments

DESTROY

This call deletes a specified standard fIle, extended file (both the data fork and
resowce fork), or subdirectory and updates the state of the me system to
reflect the deletion. After a fIle is destroyed, no other operations on the file are
possible.

This call cannot be used to delete a volume directory; the FORMAT call
reinitializes vulume directories. Similarly, this call cannot be used to delete
character-device fIle.

It is not possible to delete only the data fork or only the resource fork of an
extended file.

Before deleting a subdirectory fIle, you must empty it by deleting all the files it
contains.

Offsel

-
pathname _

Longword INPUT pointer
-

Longword input pointer: Points to a Pascal string that represents the pathname
of the file to be deleted.

A fIle cannot be destroyed if it is currently open or if the access attributes do
not permit destroy access.

2~ Volwre 1: Applications and GSiOS Appendixes

8/31/ 88

G~OS Rejert!flCli (Volume 1)

Errors

$10 device not found
$27 VO error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$4B unsupported storage type
$4E access: file not destroy-enabled
$50 file open
$52 unsupported volume type
$53 invalid parameter
$ 58 not a block device
$ 5A block number out of range

8/31/88

Appendix A: GSiOS ProDOS 16 Calls 241

GYOS Referma (Volume 1) Dnlft 3 (APDA)

$002C

Description

Parameters

devNwn

devName

Errors

This call returns general information about a device attached to the system.

Offset Si2le and type

$(X)
I- devNUID - Word INPUT value

$02
f- -
r devName - Longword INPUT pointer
I- -

Word input value: A device number. GS/OS assigns device numbers in sequence
0, 2, 3, and so on) as it loads or creates the device drivers. There is no fIXed
correspondence between devices and device numbers. To get information
about every device in the system, one makes repeated calls to D_INFO with
devNwn values of 1, 2,3, and so on until GS/OS returns error $53: parameter out
of range.

I.ongword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the device name of the device specified by device number.
The maximum size of the string is 31 byres, so the maximum size of the returned
value is 33 bytes. Thus, the buffer size should be 35 bytes.

$11 invalid device number
$53 parameter out of range

242 Volume I: Applications and GSiOS Appendixes

8/31/88

GS'OS Reflfmlce (Volume 1) DrrJft 3 (APDA)

$0025

Description

Parameters

devName

volName

fileSysID

This call pUlli up a dialog box that allows the user to erase a specified volume
and choose which file system is to be plaoed on the newly elllsed voluIre. The
volume IlVJSt have been previously physicaIIy formatted. The only difference
between ERASE_DISK and FORMAT is that ERASE_DISK does not physically
format the volum:. See the FORMAT call later in this appendix.

Offset Size and type

soo - -
- devName - Longword INPtrr pointer - -
- -
- vol Name - Longword INPur poinler
- -
- fileSysID - Word RESULT w1ue

Longword input pointer: PoinlS to a Pascal string that represenlS the device
naIre of the devioe containing the volume to be erased.

Longword input pointer: PoinlS to a Pascal string that represenlS the voluIre
naIre to be assigned to the newly erased volum:.

Word result value: If the call is sucoessful, this fIeld identifies the me system
with which the disk was formatted. If the call was unsuccessful, this field is
undefined.

$0000
$0001
$0002
$0003
$0004
$0005
$0006

reserved
ProDOS/SOS
OOS3.3
OOS 3.2 or 3.1
Apple II Pascal
Macintosh (MFS)
Macintosh (HF5)

$0007
$0008
$0009
$OOOA
$ooOB
$OOOC
$OOOD-$FFFF

LISA
Apple CP/M
reserved
MS/DOS
High Siem
ISO 9660
reserved

Appendix A:. GSiOS ProDOS 16 Calls 243

8/31/88

GYOS Refermce (Vo/wme 1) Draft 3 (APD,v

Errors

$10 device not found
$11 invalid device request
$27 I/O error
$28 DO device connected
$2B write-protected disk
$53 parameter out of range
$5D me system not available
$64 invalid FST lD

244 VoIullI! 1: Applicalions and Gfw'OS

8/31/88

Appendixes

~ ...

GSIOS Reference (Volums 1) Drajl3 (APDA)

$OOOE

Descripdoll

Parameters

inputPath

outputPath

flags

Errors

This call converts the input pa!hname into the corresponding full pathnarre with
colons (ASCII $3A) as sepa/1ltors. If the input is a full pathname,
EXPAND]ATIl simply converts all of the sepa/1ltors to colons. If the input is a
partia1 pathname, EXP AND] A TIl concatenates the specified prefix with the .
rest of the partia1 pa!hname and converts the separators to colons.

If bit 15 (MSB) of the fl ags parameter is set, the call converts all lowercase
characters to uppercase (aU other bits in this parameter must be cleared). This
call also penorms limited syntax checking. It returns an error if it encounters an
illegal character, two adjacent separators, or any other syntax error.

Offset Sbz and type

- -
- inputPath - Longwoni lNPlIT pointer - -
f- -
... output Path -
t- -

Longword lNPlIT pointer

t- flag. - Word INPlIT value

Longwold input pointer: PoinlS to a Pascal input string that is to be expanded.

Longwold input pointer: Points to a buffer in which GS/OS rerurns a Pascal
string that contlins the expanded pathname.

Wold input value: If bit ISis set to 1, this call rerurns the expanded pathname in
uppercase characters. All other bilS in this wold must be zero.

$40
$4F

invalid pa!hname syntax
buffer too small

Appendix A:. GS/OS ProDOS 16 Gills 245

8/31/88

GS'OS Refemu:e (Volume 1) Draft 3 (AIDA) 8/31/88

"--... .

. .. ~.

246 volume 1: Applications and GSIOS Appendixes

GYOS Refemra (Volume 1) Dmf/3 (APDA)

$0015

Description

Parameters

fileRefNwn

Errors

FLUSH

This call writes to the volume all Hle state information that is buffered in
memory but has not yet been written to the volume. The purpose of this call is
to assure that the representation of the file on the volume is consistent and up
to date with the latest GS/OS calls affecting the file. Thus, if a power failure
occurs imnx:diatety after the FLUSH can completes, it should be possible to
read all data written to the Hle as well as all file attributes. If such a power failure
OCCUlS, HIes that have not been flushed may be in inconsistent states, as may the
volume as a whole.

A value of $0000 for the fileRefNwn parameter indicates that all files at or
above the current file level are to be flushed

OUset Size and type

soo[]
[fileRefNum J Word INPUT value

Word input value: The identifying number assigned to the me by the OPEN call.
A value of $0000 indicates that all fIles at or above the current system file level
are to be flushed.

$27 VO error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$SA block number out of range

Appendix A: GSiOS ProOOS 16 Calls 247

8/31/88

GSiOS Refl!r1!rlU (Volume 1) DrrJjt 3 (APDII)

$0024

Desc:riptlon

Pat2meters

devName

volNaJ!le

fileSy"ID

FORMAT

This call puts up a dialog box that allows the user to physically fonnat a
specified volume and choose which file system is to be placed on the newly
fonnatted volume.

Some devices do not support physical fonnatting, in which case the FORMAT
call writes only the empty file system, and in effect is just like the ERASE_DISK
call. See the ERASE_DISK call earlier in this chapter.

Offset

... -
i- davName - Longwotd INPUT pointer ... -

r -
- volName - Longwotd INPUT pointer
- -

- fileSysID -$08 Word RESULT value

Longword input pointer: Points to a Pascal string that represents the device
name of the device containing the volume to be fonnatted.

Longword input pointer: Points to a Pascal string that represents the volume
name to be assigned to the newly fonnatted blank volume.

Word result value: If the call is successfu~ this field identifies the file system
with which the disk was fonnatted. If the call is unsuccessful, this field is
undefmed. The me system IDs are as follows:

248 Volume 1: Applications and GSiOS Appendixes

8/31/88

GSIOS ReJertmce (Volume 1) Dnlf/3 (APDA) 8/31/88

-

$0000 reserved $0007 USA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 0053.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $OOOA MS/D05
$0004 Apple n Pascal $OOOB High Sierra
$0005 Macintosh (MFS) $OOOC ISO 9660
$0006 Madntosh (HFS) $OOOD-$FFFF reserved

Errors

$10 device not found
$11 invalid device request
$27 VO error
$28 no device connected
$2B write-protected disk
$53 param:ter out of range
$5D file system not available
$64 invalid PST 10

Appendix A: GSiOS ProDOS 16 Calls 249

GYOS Reference (Volume 1) Draj/3 (APDA)

$0028

Description

dat .. Buffer

Errors

This call returns the volume name of the volume from which the ftle GSfOS was
last loaded and executed. The volume name returned by this call is equivalent to
the prefIX specified by Of.

OUset

$00_ _

- dataBuffer - Longword INPlIT poinler
- -

Longword input pointer: Points to a buffer in which GSfOS returns a Pascal
string containing the boot volume name.

$4F buffer too small

~ Volume 1: Applications and GSiOS Appendixes

8/31/88

G~OS Re/erma (Volume 1) DmjI3 (APDA)

$0020

Descrlptlon

Parameters

devName

devNum

Errors

This call returns the device number of a device identified by device name or
volume name. Only block devices may be identified by volume name, and then
only if the named volume is mounted. Most other device calls refer to devices
by device number.

GSIOS assigns device numbers at boot time. The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for determining the
device number for a particular device.

Because a device may hold different volumes and because volumes may be
moved from one device to another, the device number returned for a particular
volume name may be different at different times.

Offset Size and type

$00 - -
- devName - Longword INPlIT pointer - -

$04 Word RESUlT value - devNum -

Longword input pointer: Points to a Pascal string that represents the device
name or volwne name (for a block device).

Word result value: The device reference number of the specified device.

$10 device not found
$11 invalid device request
$40 invalid device or volume name syntax
$45 volume not found

Appendix A:. GSiOS ProOOS 16 Calls 251

8/31/88

GS'OS Referena (Volume 1) DrrJfI3 (APDA)

$OOIC

Description This call returns information about a directory entry in the volume directory or a
subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the application to step forward or
backward through me entries or to specify absolute entries by entry number.

OUset

'- refNum - Word INPlIT value

- flaqs - Word RESULT value

- base - Word INPlIT value

$06 - diaplacement _ Word INPlIT value

- -
- nameBuffer - Longword INPlIT pointer
- -

- entryNum -soc Word RESULT value

- fil.Type -SOH
Longword RESULT value

$10 - -
- endOfFile - Longword RESULT value
- -

$14 - -- blockCount - Longword RESULT value
- -

$18

252 Volume 1: Applications and GSiOS Appendixes

8/31/88

~-- --.

GYOS Referrmce (Volume 1) DrrJft 3 (APDA)

refNum

flags

base

$18
I- -
I- -
I- -
I- craateTime . - Double loogword RESULT value

I- -
I- -
I- -

I- -
I- -
'- -
- rrodTime - Double loogword RESULT value

- -
- -
- -

- access -S28 Word RESULT value

S2A - -
- auxType lDngword RESULT value -
- -
- fileSysID -$21! Word RESULT value

Word input value: The identifying number assigned to the directory or
subdirectory by the OPEN call.

Word result value: Flags that indicate various aruibutes of the me.

file is an extended IiIe (lhe file may ha..,
bo<h • da!a Forie and • I'eIOIIl<e Forie) • I

file is nOl an elIIended file • 0

Word input value: A value that tells how to interpret the displacement field, as
follows:

$0000 displacement gives an absolute entry number
$0001 displacement is added to Clirrent displacement to get next entry

number

Appendix A: GS/OS ProDOS 16 Gllls 253

8/31/88

GS/OS Refemrce (Volume 1) Draj/3 (APDA)

$0002 displacement is subtracted from current displacement to get next
entry number

displacement Word input value: In combination with the base parameter, the displacement
specifies the directory entry whose information is to be returned. When the
directory is fust opened, GS/OS sets the current displacement value to $0000.
The current displacement value is updated on every m·CDffi_ENTRY call.

nameBuffer

entryNum

fileType

endOfFile

blockCount

createTime

modTime

access

auxType

fileSy:sIO

If the base and displacement fields are both zero, GS/OS returns a 2-byte value
in the entryNumber parameter that specifies the total number of active
entries in the subdirectory. In this case, GS/OS also resets the current
displacement to the fllSt entry in the subdirectory.

To step through the directory entry by entry, you should set both the base and
displacement parametelS to $0001.

longword input pointer: Points to a buffer in which GSiOS returns a Pascal
string containing the name of the me or subdirectory represented in this
directory entry.

Word result value: The absolute entry number of the entry whose information is
being returned This field is provided so that a program can obtain the absolute
entry number even if the base and displacement parametelS Specify a
relative entry.

longword result value: The value of the me type field of the directory entry.

longword result value: Value of the EOF field of the directory entry.

longword result value: The value of the blocks used field of the directory entry.

Double Iongword result value: The value of the creation date/time field of the
directory entry.

Double longword result value: The value of the modification date/time field of
the directory entry.

Word result value: Value of the access attribute field of the directory entry.

longword result value: Value of the auxiliary type field of the directory entry.

Word result value: FUe system identifier of the file system on the volume
containing the file. Values of this field are described under the VOLUME call.

254 Volume 1: Applications and GS/OS Appendixes

8/31/88

GSIOS Reference (Volume 1) Dn1jI3 (APDA)

Errors

$10 device not found
$27 I/O error
$4A version error
$4B unsupported storage type
$4F buffer too small
$52 unsupported volume type
$53 invalid paraJIK:ter
$58 not a block device
$61 end of directory

8/31/88

AppendixA: GSiOS ProDOS 16 C1I1s 255

GYOS Refemra (Volume I) DmJl3 (APDA)

$0019

Descrlptioo

Parameters

refNum

eof

Errors

1l1is function returns the current logical size of a specified me. See also the
SE'CEOF call in tim appendix.

Offsel 5I2emdtype

$00
I- eofR_fllum - Word INPtrr value

$02
~ -
I- eofPosition - Longword RESULT value
'- -

Word input value: The identifying number assigned to the file by the OPEN call.

Longword result value: The current logical size of the file, in bytes.

$43 invalid referenoe number

256 Volume 1: Applications and GSiOS Appendixes

8/31/88

GYill Reference (Volume 1) Draft 3 (APDI\!

$0006

Description

Parameters

This call returns certain ftle attributes of an existing open or closed block file.

Important A GET_FIlE.INFO call following a SET.FIlE.INFO calion an open
ftle may not return the values set by the SET_FIlE.INFO call. To
guanntee recording of the attnbutes specified in a
SET _FIlE_INFO call, you must fJm close the me.

See also the SET.FIlE.INFO call in this appendix.

Offset

$00
f- ·
r- pathname · Longword INPlIT pointer
f- ·
'- fAccess · Word RESULT value

... filel"ype · Ward RESULT value

f- ·
- auxType - Longward RESULT value - -

- storaqeType -soc
Word RESULT value

- ereateOate - Word RESULT value

- createTime -SlO
Word RESULT value

- modDat. -$12
Word RESULT value

f- modTime -$14
Ward RESULT value

t- -$16

f- block40s~ ·
f- ·

Longward RESULT value

Appendix A: GS/OS ProDOS 16 Calls 2)1

8/31/88

GSiOS ReftmlCe (Volume J) Dmj/3 (APDA)

pathname

fAccess

fileType

auxType

storageType

createDate

createTime

moc\Date

modTime

block"Used

Longword input pointer: Points to a Pascal string representing the pathname of
the me whose Hie infonnation is to be reuieved.

Word result value: Value of the file's access attribute, which is described under
the CREATE call.

Word result value: Value of the file's file type attribute.

Longword result value: Value of the file's auxiliary type attribute.

Word result value: Value indicating the storage type of the file, as follows:

SOl standard me
$05 extended me
SOD volume directory or subdirectory file

Word result value: Value for the me's creation date attribute which is described
under the CREATE call.

Word result value: Value for the me's creation time attribute, which is described
under the CREATE call.

Word result value: Value for the me's modification date attribute. The format is
the same as the createDate parameter.

Word result value: Value for the file's modification time attribute. Format is the
same as the createTime parameter.

Longword result value: For a standard file, this fIeld gives the total number of
blocks used by the file. For an extended me, this field gives the number of
blocks used by the file's data fork.

For a subdirectory or volume directory file, this fIeld is undefined.

258 Volume 1: Applications and GSiOS Appendixes

8/31/88

GSIOS Reference (Volume 1) Druf/3 (APDA)

Errors .

$10 device not found
$27 VO error
$40 invalid pathname syntax
$44 path not fowxi
$45 volwne not found
$46 me not found
$4A version error
$4B unsupported storage type
$52 unsupported volume type
$53 invalid parameter
$58 not a block device

8/31/88

Appendix A; GS/OS ProOOS 16 Calls 259

GYOS ReJerrmce (Volume 1) Drr1/13 (APDN

$0021

Description

Parameters

devNum

This call returns the device number of the last accessed device. The last
accessed device is deftned as the last device to which any device command was
directed by GSiOS as the result of a GSiOS call.

A ProgIalI1 that uses this call1lRlSt take into account that the last device value
can change at any time due to a device-accessing GS/OS call made by an
asynchronously executed process such as a desk accessory or interrupt handler.

To insure that the GE'Cu.sT_DEY caU returns the last device accessed by the
given program, the program must:

1. Disable interrupts.

2. Make the GS/OS call that accesses the device (for example, OPEN, READ).

3. Make the GET_LAST_DEY call.

4. Restore the interrupt state that was current before step 1.

Unfortunately, this sequence locks out interrupts for more than the maximum
recommended interrupt disable time. Therefore, system integriry cannot be
guaranteed, especially in a networked environmen~ where rapid interrupt
handling is crucial.

Important Because of this danger to system integrity, use this caU with
caution, if at all.

Offsel She and type

soo[]
LL __ d_8V_N_um __ -,1 Word RESULT value

Word result value: Device number of the last accessed device.

~ Volurre 1: Applicalions and GS/OS Appendixes

8/31/88

GSiOS Refem1C4 (Volume 1) DrrlfI3 (APDA)

Errol'S

$01 bad system call number
$04 parameter count out of range
$07 GS/OS is busy
$59 invalid file level

8/31/88

Appendix A: GSIOS ProDOS 16 Calls as1

GYOS Referena (Volume 1) DnJfI3 (APDA)

$OOIB

Desctlptfon

level

Errors

This function returns the current value of the system file level. See also the
SE'UEVEL call in this appendix.

OUset She and type

$00 L-E __ l_e_ve_l __J1 Word RESULT value

Word result value: The value of the system file level.

$01 bad system Clll number
$04 parameter count out of range
$07 GSiOS is busy
$59 invalid file level

162 Volume 1: Applications and G~OS Appendixes

813]/88

G~OS Re/erma! (Volume 1) Drufl3 (APDA)

$0017

Description

Parameters

markRefNum

position

Errors

This function renuns the current file mark for the specified me. See also the
SECMARK call in this appendix.

Offset S1zaadtype

$00 - markRet'Num - Word INPlIT value

$02 - -
- position - Longword RESULT value
- -

Word input value: The identifying nwnber assigned to the me by the OPEN call.

Longword result value: The current value of the me mark, in bytes, relative to the
beginning of the file.

$43 invalid reference nwnber

Appendix A: GSIOS ProDOS 16 Calls ~

8/31/88

GYOS Referrma (Volume !) Draft 3 (APDA)

$0027

Description

Parameters

dataBuffer

Errors

Returns the ftIenanx: (not the complete pathname) of the currently running
application program.

To get the complete pathnanx: of the current application, concatenate preflX 1/
with the filenanx: retwned by this call. Do this before making any change in
prefIx 11.

ottser Slze wi type

$OOf- _

- dataBuffer - 1.0 oed INPtrr POIlll' ngw er - -

Lengword input pointer: Points to a buffer in which GSiOS returns a Pascal
string containing the ftIename.

$4F buffer too small

264 VoIuJre 1: Applications and GfoIOS Appendixes

8/31/88

GYOS Refemrce (Volume 1) DrrifI3 (APDA)

$OOOA

Description

Parameters

prefixNum

prefix

Errors

This function rerums the current value of anyone of the numbered prefIxes. The
returned prefIx string always starts and ends with a separator. If the requested
prefIx is null, it is rerurned as a string with the length fIeld set to O. This call
should not be used to get the boot volume prefIX (e/). See also the SET]REFIX
call in thls appendix.

Offset SIze and type

$00 - prefixNum - word INPUT value

IOZ - -
- prefix - Longword INPUT pointer
- -

Word input value: Binary value of the prefIX number for the prefIX to be
rerumed.

Longword input pointer: Points to a buffer iit which GS/OS rerums a Pascal
string containing the prefIX value.

$4F buffer too smail
$53 invalid parameter

Appendix A: GSiOS ProDOS 16 Calls 265

8/31188

GS'OS Referrmce (Volume 1) Dmft 3 (APDA)

$OO2A

Description

Parameters

version

Errors

GET_ VERSION

This call returns the version number of the GSiOS operating system This value
can be IJ5ed by application programs to condition version-dependent
operations.

OUset SIzie aad type

$alL] ... l __ va_r_s_io_n_---'I Word Rl!SULT value

Word result value: Version number of the operating system, in the foilowing
format:

J511,4113112111110 I 9 I ~ I : I 6 I 5 I 4 I 3 I 2 11 I ~ I
protaype _. 1 .

fin2I relea!e • 0

major_number

minor release nWI'ber

(none except general system errors)

'}{f, Volume 1: Applications and GSiOS Appendixes

8/31/88

"--,." .

GSIOS Refemu;e (Volume 1) Draft 3 (APDA)

$0011

Description

Panmeters

newLRefNum

enableMa~k

NEWLINE

This function enables or disables the newline read mode for an open file and,
when enabling newline read mode, specifies the newline enable mask and
newline character or characters.

When newline mode is disabled, a READ calI tenninates only after it reads the
requested number of charactelli or encounters the end of file. When newline
mode is enabled, the read also tenninates if it encounters one of the specified
newline characters.

When a READ calI is made while newline mode is enabled and another character
is in the file, GS/OS perfOllIl'J the follOwing operations:

1. Transfers next character to use(s buffer.

2. PecfollIl'J a logical AND between the character and the low order byte of the
newline mask specified in the last NEWLINE call for the open file.

3. Compares the resulting byte with the newline character or characters.

4. If there is a match, tenninates the read; otherwise continues at step 1.

Offset

$00 - newLRefNum - Word INPIIT value

- enableMask - Word lNPIIT value

- newlineChar - Word INPIIT value

Word input value: The identifying number assigned to the file access path by the
OPEN call.

Word input value: If the value of this field is $0000, newline mode is disabled. If
the value is greater than $0000, the low-order byte becomes the newline mask.
GSIOS pecfollIl'J a logical AND of each input character with the newline mask
before comparing it to the newline characters.

Appendix A:. GSI~ ProDOS 16 Calls]f,7

8/31/88

GSfOS Referrmce (Volume 1) DrrJfI3 (APDA)

newlineChar

Errors

WOld input value: The low-order byte of this field is the newline character.
When disabling newline roode (enableMask - $(000), this parameter is
ignored.

$43 invalid reference number

268 Volume 1: Applications and GSiOS Appendixes

8/31/88

GYOS Reftrnu;e (Volume 1) DrrIft 3 (APDA)

$0010

Description

Parameters

OPEN

This call causes GSiOS to establish an access path to a file. Once an access path
is established, the user may perfOlIll file READ and WRITE operations and other
related operations on the file.

Oftset

$00
f- openRefNum - Word RESULT value

102 ,.. -
'- openPathname _ lonpord INPUT pointer
- -

S06 - -
- ioBu!.!er - Reserved
- -

openRefNum Word result value: A reference number assigned by GS/OS to the access path. All
other file operations CREAD, WRrrn, CLOSE, and so on) refer to the access path
by this number.

openl?athname Longword input pointer: Points to a Pascal string that represents the pathnarne
of the file to be opened.

iOBuffer This field is reserved and must be set to $00000000.

Appendix A: GSiOS ProDOS 16 CAlI.s 2fB

8/31/ 88

GS'OS RefM1lU (Volume 1) Dmj/ 3 (APDA)

$27 VO error
$28 no device connected
$ 2E disk switched
$40 invalid pathll3lre syntax
$44 path not found
$4 5 volume not found
$46 file not found
$4A version error
$48 unsupported storage type
$4E access not allowed
$4F buffer too small
$50 open fUe
$52 unsupported volume type
$58 not a block device

270 Volurre 1: Applicalions and GS/OS

8/31/88

. "-,

Appendixes

GYOS Refl!mla (Volume 1) Dtaft3 (APDA)

$0029

Descrfptlon

Parameters

QUIT

This call tenninates the running application. It also closes all open files, sets the
system file level to 0, initializes certlin components of the Apple IIGS and the
operating system, and then launches the next application.

For more infonmtion about quitting applications, see Chapter 2, 'GS/OS and
Its Environment.'

Offset She and type

$00_ _

- quitPathname - Longword INPUI' pointer

- -
$04_ flags

- Word INPUI' V21ue

quitPathname Longword input pointer: Points to a Pascal string that represents the pathname
of the program to run next If the quitPathname parameter is null or the
patbname itself has length 0, GS/OS chooses the next application, as described
in Chapter 2.

flag" Word input value: Two Boolean flags that give infonmtion about how to handle
the program executing the QUIT call, as follows:

Pbce SI2!e infumwion >bout the quitting
prngruD on the Quit reDlm stadt.50 tIw
it ... ill be automaliCllly reota!!Od later • I

Do na stack the quitting program' 0

The quitting program is apable of being
JOSWted from ita dormant menxxy image' J
Th. quitting program """ be reloaded from

di,k if it is restarted • 0

Appendix A; GS/OS ProOOS 16 Calls Z7l

8/31/88

GY05 Rt/1!rt!1Ia (Volume 1) Dmft 3 (APDA)

Comments

Enors

Only one error condition causes the QUIT call to rerum to the caller: error $07
(GS/OS busy). All other errors are managed within the GS/OS program
dispatcher.

$07 GS/OS is busy

m Volume 1: Applications and GSiOS Appendixes

8131/88

." - .

GSiOS Heferma (Volume 1) Draft 3 (APDA)

$0012

DescrlpdoD

Parameters

fileRefNum

READ

This function attempts to transfer the number of bytes given by the
requestCount pal'3lreter, sraning at the current mark, from the me specified
by the refNum parameter into the buffer pointed to by the dataBuffer
parameter. The function updates the file mark to reflect the new file position
after the read.

Because of two situations that can cause the READ function to transfer fewer
than the requested number of bytes, the function returns the actual number of
bytes transferred in t ransferCount. If GS/OS reaches the end of me before
transferring the number of bytes specified in requestCount, it stops reading
and sets transferCount to the number of bytes actually read.

If newline mode is enabled and a newline character is encountered before the
requested number of bytes have been read, GS/OS stops the transfer and sets
transferCount to the number of bytes actually read, including the newline
character.

Offset She and type

soo - :fileRefNum - Word INPUT value

S02 - -
- dataBuffer - I.ongword INPUT power
- -

$06 - -
_ requestCount _ J.ongward INPUT value
t- -

~ -r transferCount - I.ongword RESULT value
~ -

Word input value: The identifying number assigned to the file by the OPEN call.

Appendix I.; GSiOS ProDOS 16 Calls V3

8/31/88

GYOS Refmma (Volume 1) Draft 3 (APDA)

ciataBuffer Longword input pointer: PoinlS to a memory area large enough to hold the
requested data.

requestCount Longword input value: The number of bytes to be read.

transferCount Loagword result value: The number of bytes actua1ly read.

Errors

$27 va error
$2E disk switched
$43 invalid reference number
$4C eof encountered
$4E access not allowed

274 Volume 1: Applications and GSiOS Appendixes

8/31/88

GYOS Referrma (Volume 1) Dmft 3 (APDA)

$0022

DesaiptiOIl

Parameters

READ_BLOCK

This call reads one 512-byte block of infonnation 10 a disk specified by device
number.

Nonnally, you should use D_READ and D_ WRITE for all direct device I/O.
READ_BLOCK deals only with 512-byte blocks and devices with a maximum of
65,536 blocks, is valid only for the ProOOS FST, and exists only for
comPltibility with ProDOS 16.

Ollset She aad type

$(Xl - blockOevNum _ Word INPUT value

$02 - -
blockOataBuffer Longword INPUT pointer - -
- - I.ongword INPUT value

- blockNum -- -

bloclcDevNum Word input value: The reference number assigned 10 the device.

blockOataSuffer Longword input pointer: Points [0 a data buffer large enough 10 hold the data
to be read.

blockNum Longword input value: The number of the block 10 be read.

Errors

$11 invalid device request
$27 I/O error
$28 no device connected
$2B write-protected disk
$53 invalid parameter

Appendix A: GSiOS ProOOS 16 Calls Z7S

8/31/88

GSIOS Rt/emtCI! (Volume 1) Dmft3(APD~

$0018

Description

Par:uneters

eofRefNum

eofPosition

Errors

This call sets the logical size of an open me to a specified value which may be
either larger or smaller than the current file size. The EOF value cannot be
changed unless the me is write-enabled. If the specified EOF is less than the
current EOF, the system may--but need not-free blocks that are no longer
needed to represent the file. See also the GE'CEOF can.

Offset Slzewltype

$00 - eofRefllum - Word /NPtJr value

$02 - -
- eofPosition - Longword /NPtJr value

- -

Word input value: The identifying number assigned to the me by the OPEN call.

Longword input value: The new logical size of the file, in bytes.

$27 VO error
$ 2B disk is write protected
$43 invalid reference number
$4D position out of range
$4E me not write-enabled
$SA block number out of range

7:16 Volume 1: Applicllions and GS/OS Appendixes

8/31/88

-~

GSiOS Refemu:e (Volume 1) Dmf/3 (APDA)

$0005

Description

Parameters

1his caD sets certain me attributes of an existing open or closed block file . This
call inunediately modifies the me information in the me's directory entry
whether the file is open or closed. It does not affect the file information seen
by previously open access paths to the same me.

Important A GET]ILVNFO call following a SET_FILE_INFO calIon an open
file may not return the values set by the SET_FlLEJNFO call. To
guarantee recording of the attributes specified in a
SET]ILE_INFO call, you must first close the file.

See also the GET_FlLEJNFO call.

Offset Size and type

$00 r -
r pathname - Longword INPUT poinler
r -

f- f~cc:e3S - Word INPUT value

r fil .. Typ .. - Word INPUT value

r -,... auxType -
r - Longword RESULT value

r <nu.l~> -$OC
Word INPUT value

r createDate -$OE
Word INPUT value

,... create Time -$10
Word INPUT value

- modDatQ -$12
Word INPUT value

- modTime -$14
Word INPUT value

Appendix A: GSIOS ProDOS 16 CalJs m

8/31/88

GS'OS ReJerrmce (Volume 1) Drafl3 (APDA)

pathname

tAccess

tileType

auxType

<null>

createDate

createTime

modDate

modTime

Longword input pointer: Points to a Pascal string that represents the patbname
of the me whose me information is to be set

Word input value: Value for the file's access attribute, which is described under
the CREATE call.

Word input value: Value for the me's me type attribute.

Longword result value: Value of the me's auxiliary type attribute.

Word input value: This field is unused and must be set to zero.

Word input value: Value for the file's creation date attribute, which is described
under the CREATE call. If the value of this field is zero, GS/OS does not change
the creation date.

Word input value: Value for the me's creation time attribute, which is described
under the CREATE call. If the value of this field is zero, GS/OS does not change
the creation time.

Word input value: Value for the ftle's mcx!ification date attribute. Format is the
same as for the createDate parameter. If the value of this field is zero,
GS/OS supplies the date from the system clock.

Word input value: Value for the file's modification time attribute. Format is the
same as for the createTime parameter. If the value of this field is zero,
GS/OS supplies the time from the system clock.

278 Volume 1: Applic:ltions and GS/OS Appendixes

8/31/88

GS/OS ReJetence (Volwne 1) Draj/3 (APDA)

Errors

$10 device not found
$27 VO error
$ 2B disk is write protected
$40 invalid pathnarre syntax
$44 path not found
$45 volwne not found
$46 fIle not found
$4A version error
$4B unsupported storage type
$4E access: fIle not destroy-enabled
$52 unsupported volume type
$53 invalid parameter
$58 not a block device

8/31/88

Appendix A: GSlQ'i ProDOS 16 Calls rJ9

GS'OS Refenma (Volume 1) Draft 3 (MDI\)

$OOlA

Descripdon

Parameters

level

Errors

This function sets the cwrent value of the system me level.

Whenever a me is opened, GS/OS assigns it a me level equal to the current
system me level. A CLOSE call with a refNwn parameter of $0000 closes all fties
with me level values at or'above the cwreot system me level. Similarly, a FLUSH
call with a refNwn paran\eter of $OOJO flushes all files with file level values ae or
above the current system file level. See also the GET_LEVEL call in this
appendix.

Offset Sl2Ie 21Id rype

$00 I..E __ l_e_v"_1 __ ;.J1 Word INPUT value

Word input value: The new value of the system file level. Muse be in the range
$OOOO-$OOFF.

$59 invalid file level

i8l Volurre 1: Applications and GSiOS Appendixes

8/31/88

..........

G~OS Refemu:e (Volume 1) Dmjl3 (APDA)

$0016

Description

Patameters

markRefNum

position

Errors

This call sets the Hie mark (the position from which the next byte will be read or
to which the next byte will be written) to a specified value. The value can never
exceed EOF, the cunent size of the file. See also the GECMARK call in this
appendix.

Offset SbJemdtype

$00
I- markRefNum - Word INPlIT value

S02
f- -
I- position - Longword INPlIT value
f- -

Word input value: The identifying number assigned to the me by the OPEN call.

Longword input value: The value assigned to the mark. It is the position (in
bytes) relative to the beginning of the file at which the next read or write will
begin.

$27 VO error
$43 invalid reference number
$40 position out of range
$5A block number out of range

Appendix A: GSiOS ProDOS 16 Calls 231

8/31/88

GS'OS Re/erma (Volume 1) D1djI3 (APDA)

$0009

Description

Parameters

prefixNum

prefix

Comments

This call sets one of the numbered pathname prefixes to a specified value. The
input to this call can be any of the following pathnames:

• a full pathname

• a partial pathname beginning with a numeric prefIX designator

• a partial pathname beginning with the special prefIX designator •• /"

• a partial pathnarne without an inilia! prefIX designator.

The SE"CPREFIX can is unusual in the way it treats partial pathnames without
inilia! prefIX designators. Nonrolly, GS/OS uses the prefix 01 in the absence of
an explicit designator. However, only in the SET]REFIX call, it uses the prefix
IVwhere n is the value of the prefixNwn field described below. See also the
GET]REFIX call in this appendix.

Offset Sl2emdtype

$(X)
I- prefixNum - word INPUT value

S02 I- -
r- prefix - Longword INPUT pointer
... -

Word input value: A prefIX number that specifIes the prefix to be set

Longword input pointer: Points to a Pascal string representing the pathnarne to
which the prefIX is to be set If this field is not given, the prefIX is set to the null
string.

Specifying a pathname with length 0 or whose syntax is illegal sets the
designated prefIX to null.

GS/OS does not verify that the designated prefIX corresponds to an existing
subdirectory or file.

The boot volume prefIX ('f) cannot be changed using this call.

:18Z Volume 1: Applications and GS/OS Appendixes

8/31188

GSIOl' Reference (Volume 1) Dmjl3 (APDA)

Errors

$40 invalid pathname syntax
$53 invalid pal1llreter

8/31/88

Appendix A G&lOS ProDOS 16 CaI1s 283

GSiOS Reference (Volume 1) DtrJf/3 (APDA)

$0008

Description

Parameters

deviceName

volName

total Blocks

freeBlock"

VOLUME

Given the nam: of a block device, this call returns the name of the volume
mounted in the device along with other information about the volume.

Offset

$00 - -- davie.Name - Longword INPUT pointer - -

- -
- vol Name - Longword INPUT pointer - -

- -
- totalBlocks - Longword REStn.T value - -

soc - -
- freeSlocks - Longword RESULT value

- -

- fileSysID -S10 Word REStn.T value

Longword input pointer: Points to a Pascal sUing that contains the name of a
block device.

Longword input pointer: Points to a buffer in which GS/OS places a Pascal sUing
containing the volume name of the volume mounted in the device.

Longword result value: Total number of blocks contained in the volume.

Longword result value: The number of free (unallocated) blocks in the volume.

2S! VoIunr: 1: Applications and GSiOS Appendixes

8/31/88

j

"-- .

GSiOS RefemlCt (Volume 1) Dmf/ 3 (APDA)

fileSysID Word result value: Identifies the me system contained in the volume, as follows:

$0000 reselVed $0007 USA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 re5elVed
$0003 DOS 3.2 or 3.1 $OOOA MS/DOS
$0004 Apple n Pascal $OOOB High Sierra
$0005 Macintosh (MFS) $OOOC ISO 9660
$0006 Macintosh (HFS) $OOOD-$FFFF reselVed

$10 device not found
$11 invalid device request
$27 VO error
$28 no device connected
$2E disk switched
$45 volume not found
$4A version error
$52 unsupported voluIre type

$53 invalid parameter
$57 duplicate volume
$58 not a block device

AppendixA: GS/OS ProDOS 16 Calls 285

8/31/88

GYOS Refemra (Volume 1) Dm[I3 (APDA)

$0013

Descrlptlon

Parameters

WRITE

This can attempts to transfer the number of bytes specified by the
reque"tCount parameter from the application's buffer to the me specified
by the fileRefNum parameter, starting at the current me mark.

The can returns the number of bytes actually transferred. It also updates the me
mark to indicate the new file position and extends the EOF, if necessary, to
accommodate the new dati.

Offset

t- fHeRefNum - Word INPUT value

t- -
t- dataBuffer - Longword INPUT pointer
t- -

t- -
r request Count _ Longword INPUT value .. -

$OA t- -
t- trans!erCount - Longword RESULT value
t- -

fileRefNum Word input value: The identifying number assigned to the file by the OPEN call.

dataBuffer Longword input pointer: Points to the area of memory containing the data to
be written to the me.

requestCount Longword input value: The number of bytes to write.

transferCount Longword result value: The number of bytes actually written.

Si Vclume I: Applications and GSiOS Appendixes

8/31/ 88

GS'05 Rt/erena (Volume 1) Draft 3 (APDA)

$27 lIO enor
$ 2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$4E access not allowed
$SA block number out of range

8/31/ 88

Appendix A: GSiai ProDOS 16 Calls 7El

GSiOS Reference (Volume 1) Dmft 3 (APDA)

$0023

Desaipdon

Parameters

This call writes one 512-byte block of information to a disk specified by device
number.

Normally, you should use D _READ and D _WRITE for all direct device I/O.
WRITE_BLOCK deals only witb 512-byte blocks and devices witb a maximum of
65,536 blocks, is valid only for the ProDOS FST, and exists only for
compatibility witb ProDOS 16.

Ollset

$00 - blockOevNum - Word INPlIT value

- -
blockDataBuffer Longword lNPlIT pointer
- -
r -
r blockNum - Longword INPlIT value
r -

blocltDevNum Word input value: The reference number assigned to the device.

blockOataBuffer Longword input pointer: Points to a data buffer that holds the data to be
written.

blockNum Longword input value: The block number of the destination disk block.

Errors

$11 invalid device request
$27 I/O error
$28 no device connected
$2B write-protected disk
$53 invalid parameter

;m Volume 1: Applications and GSiOS Appendixes

8/31/88

GYOS Referma (Volume 1) Drrlft 3 (AIDA)

Appendix B ProDOS 16 CaIls and FSTs

This appendix discusses how individual GS/OS file system lIllnsiatOlS handle
ProOOS 16 (• GS/OS class 0) calls. It shows only the differences in each FITs
call handling from what is presented in Appendix A, "GSIOS ProOOS 16 Calls.'
See that appendix for the standard way to make ProOOS 16 calls to GS/OS.

Appendix B: ProDOS 16 Calls and FSTs 2SJ

8/31/88

GSlOf Referena (Volume 1) Draft 3 (APDA)

The ProD OS FST

The ProOOS PST translates ProOOS 16 calls to the format used by the ProOOS me system. Actually,
because that is already the me system that ProOOS 16 calls are designed to access, no translation is
necessary. All GS/OS ProOOS 16 calls that pass through the ProDOS FST function exactly as
described in Appendix A.

See Chapter 9 of this volwre for rore information on the ProOOS FST. For further information on
ProOOS 16, see the Apple DGS ProDOS 16 Referl!1la.

The High Sierra FST

The main difference between the High Sierra FST and other FSTs is that High Sierra does not support
writing to a me. CD-ROM is a reado{)nly medium

Table B-1 lists the ProDOS 16 calls, both meaningful and not meaningful, that the High Sierra FST
supports. A description of each call's differences from its standard meaning (described in Appendix
A) follows.

See Chapter 10 of this volume for more information on the High Sierra file system translator.

m Volume 1: Applications and GSiOS Appendixes

8/31/88

GSIOS Refemra (Volume 1) Drr1jI3 (AIDA)

Table 1-1 High Siena FST ProDOS 16 ca1Is

Meaningful Not m.."oIngful

$06 GET_FILE_INFO $01 CREATE

$08 VOLUME $02 DESTROY
$10 OPEN $04 CHANGE_PAm

$12 READ $05 SET_FILE_INFO

$14 CLOSE $13 WRITE
$16 SET_MARK $15 FLUSH

$17 GET_MARK $18 SET_EOF

$19 GET_EOF SOB CLEAR_BACKUP _BIT

$lC GET_DIR_ENTRY $22 ERASE_DISK

$20 GET_DEV_NUM $24 FORMAT

With the exception of the FLUSH call, all ca1Is on the right side of Table B-1 do nothing and return
error $2B (write-protected). The FLUSH call also does nothing, but it returns no error (carry flag z

dear). .

The following sections describe how the High Sierra FSTs handling of some of the calls listed on the
left side of Table B-1 is different from standard ProDOS 16 practice. Calls listed on the left side of
Table B-1 that are not described below are handled exactly as documented in Appendix A.

GET_FILE_INFO ($06)

GET]ll.E_INFO returns certain attributes of an existing block me. The me may be open or closed.

Parameter dHIen:nces

fileType

modOate

modTime

This word output value equals $OOOF if the me is a directory; otherwise, it is
$0000 (unknown~less the mename extension marches an entry in the me
type mapping table. See the FSfSpecific call description in Chapter 10, "The
High Sierra FSf."

This word output value always has the sam: value as createDate.

This word output value always has the same value as createTime.

Appendix B: ProOOS 16 Calls and FSI's 291

8/31/88

GS'OS ReferertCII (Volume 1) Draf/3 (APDA)

blocksUsed This longword output value is always the same as the totalBlocks parameter
rerumed from a Volume call.

VOLUME ($08)

Given the name of a block device, this call returns the name of the volume lOOunred in that device
and other information about the volume.

Parameter dllJerences

freeBlocks This Iongword output value is aways $(XXX).

This call returns information about a directory entry in the volume directory or a subdirectory.
Before executing this call, the application must open the directory or subdirectory. The call allows
the application to step forward or backward through file entries or to specify absolute entries by
entry number.

The High Sierra FST does not allow READ ca11s and GET_DIR_ENTRY calls to the same reference
number: if an open file has previously been accessed by GET_DIR_ENTRY, and a READ call is made
with the same reference number, the High Sierra FST returns error $4E (invalid access). To avoid the
error, open the directory twice.

Parameter dllJerences

fileType

modDateTime

auxType

fileSysID

This word output value equals $OOOF if the file is a directory; otherwise, it is
$(XXX) ('unknown"}--unless the filename extension matches an entry in the file
type mapping table. See the FSTSpecific call description in Chapter 10, "The
High Sierra FST:

This double longword output value always has the same value as
createDateTime.

This ongword output value is always $0000.

This word output value is always $(xx)B for High Sierra or $(XX)C for ISO 9660. If
it has any other value, the High Sierra FST returns error $52 (unsupported volume
type).

m Volume 1: Applications and GSiOS Appendixes

8/31/88

G:lOS Reference (VoIwne I) Draft 3 (APDA)

The Character PST

The Char.lcter me system translator (Char.Icter FS1) provides a fIle-system-Uke interface to character
devices such as the console, printer.;, and modems.

Because the Char.lcter !'Sf handles ProDOS 16 calls, all ProDOS 16 applications automatically have
the capability of accessing character devices as files when running under GS/OS. ProDOS 16 itself
does not provide that capability to ProDOS 16 applications.

The Character FSf suppol1S this subset of ProDOS 16 calls:

OPEN
NEWLINE
READ

WRITE
CLOSE
flUSH

Attempting to send any other GS/OS ProDOS 16 call to a character device results in error $58 (not a
block device).

See Chapter 11 for a general description of the Character FSf.

OPEN ($10)

OPEN establishes an access path to the character me.

Parameter dJffcrences

pathname This longword input pointer nrust point to a character device name.

Errors

In addition to the standard ProDOS 16 OPEN errors, the Char.lcter FSf can return these errors from an
OPEN call:

$26 driver no resources
$2F driver off line
$54 out of memory

Appendix B: ProDOS 16 Calls and FSTs 293

8/31/88

G~ Referrma (VoIIIme 1) l>trJ/I3 (AJ'DA)

READ ($12)

The READ call attemptS to tIansfer the requested numr of bytes from the specified character file
into the application's data buffer.

Errors

In addition to the standald ProDOS 16 READ errors, the Character FST can return these errors from a
READ call:

$23 driver not open
$2F driver off line
$53 parameter out of mnge
$54 out of memory

WRITE ($13)

The WRITE call attempts to transfer the requested number of bytes from the application's data
buffer to the specified character file.

Errors

In addition to the standald ProDOS 16 WRITE errors, the Character FST can return these errors from a
WRITE call:

$23 driver not open
$2F driver off line
$54 out of memory

crOSE ($14)

The CLOSE call terminates access to the specified (by re fNurn) character file. CLOSE also involves
flushing the file (see the FLUSH call) to ensure completion of all data transfer before a chamcter file is
closed.

In addition to the standard ProDOS 16 CLOSE errors, the Character FST can return these errors from a
CLOSE call:

2:9(VoIum: 1: AppIicI1ions and GfVOS Appendixes

8/31/88

GYill Reference (Volume 1) DmjI3 (APDA)

$23 driver not open
$2F driver off line

FLUSH ($15)

The flUSH routine completes any pending dara tJansfer to the character file specifed by re fNurn. If
the character device is synchronous, all dara transfer is by definition completed when the WRITE call
returns, so the flUSH routine simply returns with no error. If the device is asynchronous (such as
internJpt-<Jriven or DMA), the flUSH routine waits until all dara has been transferred, and then returns.
If the file is nUdtiply opened, all (output) access paths to the character me (not just the one with the
specified refNum) are flushed.

Errol'S

In addition to the standard ProOOS 16 flUSH errors, the Character FST can return these errors from a
flUSH call:

$23 driver not open
$2F driver off line

ProD OS 16 device calls

The only proOO5-16 device call is DJNFO, which is handled only by the Device Manager-no FST can
accept this call. Therefore, the srandard description of D_INFO in Appendix A is the complete
specification.

See the Introduction and Chapter 1 of Volume 2 for more general information on the Device Manager
and GSiOS device calls.

Appendix B: ProDOS 16 Calls and FSTs 295

8/31/88

GS'OS Refere'IIa (Volume 1) D1t1ft 3 (APDA)

Appendix C The GS/OS Exerciser

The GS/os Exerciser is an applicatioQ that allows you to 'exercise" GS/OS by
practicing all its ca& from the keyboard. You can learn exacdy how each GS/OS
call works and what its results are before writing it Into your programs. The
GSiOS Ex~ is an excellent tool for learning the details of the application
Interrace to GS/OS.

Appendix C: The GSiOS Exerciser m

8/31/88

GYOS Referena (Volume 1) Dmft 3 (APDA,)

Starting the Exerciser

Before using the GS/OS Exerciser, be sure to make a copy and put the original in a safe place.

Warning! The Exelt:iser is a poweri'ul program that does not protect you in any way from
destroying data in memory or on any disk you can access. You can easily modify parts of
menx>ry that are already in use, causing a system crash. You can unintentionally overwrite
critical data on disk, even a disk's directory. Be careful how you use this program!

Once the program is running, you see the main screen (Figure CoO. Note that the Exerdser uses a text
based display.

Figure C-I Exerciser main screen

CS/OS System Call Exerciser vXX.XX
Copyriqht 1987.1988 Apple Computer Inc.

10 Aug 1988
All Rights Reserved

SOl-Create SOF-GetSysPrefs
S02-Destroy SlO-Open
S03-0SShutdown Sll-Newline
S04-ChanqePath Sl2-Read
SOS-SetFilelnfo $13-Write
S06-GetFilelnfo S14-C!ose
SOB-Volume SlS-Flush
S09-SetPrefix S16-setMark
SOA-GetPrefix $17-Get.Mark
$OB-ClrBackupbit Sl8-SetEOF
SOC-setsysPrefs Sl9-GetEOF
SOD-Null $ lA-Set Level
SOE-ExpandPath

J - Make inline calls to GS/OS
L - Catalog a directory
N - Catalog $00 levels of a directory
Q - Quit back to caller

Select command: $01

~ V~ 1: Applications and GSiOS

SIB-Get Level $28-GetBootVol
SlC-GetDirEntry S29-Quit
SlD-BeginSession $2A-GetVersion
SlE-EndSession $2B-GetFSTlnfo
SlF-SessionStatus S2C-DInfo
S20-GetDevNumber S2D-DStatus
S2l-GET_LAST_DEV S2E-DCont reI
S22-READ_BLOCK S2F-DRead
S2J-iiRITE BLOCK $30-DWrite -
$24-Format SJl-BindInt
S25-£raseDisk S32-0nbindlnt
$27-CetName $33-FSTSpecific

K - Make class 0 calls to GS/OS
M - Modify the contents of memory
P - Set minimum p_count for all calls
R - Visit the Monitor

Appendixes

8/31/ 88

GS'OS Refemu:e (Volume 1) Dmjl3 (APDA)

Call options

The GSiOS Exerdser can make almost any call an application makes, and in several different ways.
Here are some of the options:

8/31/88

• Stack/In.Iine system calJs (J): The Exerciser lets you make a call with either of two methods. The
first is a stack-based call: you push the parameter buffer address and the command number onto the
stack and then call the appropriate GS/OS entry point The second method is the (more familiar)
inIine call: you call the appropriate GSiOS entry point and immediately follow with the command
number and the parameter buffer pointer. (ProDOS 8 uses the inline call method.)

In the Exen:iser, you lOggle between stack-based caI1s and inline caI1s by pressing].

• System C2Il classes (K): GS/OS includes the concept of call classes. Although up to eight classes
are possible, only classes 0 (ProDOS 16-compatible caI1s) and 1 (standard GS/OS calls) are currently
defined.

By pressing K foUowed by either the arrow or number keys, you can select which c1ass of call to make.

• Maxlmwn!MlnJmum parameter counts (P): Many GSiOS calls accept a variable number of
parameter.;. For each call, there is a minimum and a maximum permitted value for the parameter
count (parameter pCount).

By pressing P at either the main screen or the parameter·setup screen (see Figure C-2), you set the
default pCount to either the minimum or maximum for the call being issued. (Only standard GS/OS
caI1s use the parameter pCount.) Then, if you want something other than the minimum or maximum,
you can reset pCoun t 10 the desired value at the parameter-setup screen.

The lower part of the main screen always displays the current settings for the method, class, and
pCount options. The method and class are also displayed on the lOp line of the parameter-setup
screen (see Figure C.2).

Making GS/ OS calls

You make GS/os caI1s from the Exerdser by entering call number.; on the main screen. The number
you enter is displayed at the bottom of the screen. You can clear the number at any time by pressing
zero twice in succession.

Appendix C: The GSiOS Exerciser V)

GS'OS Referrma (Volume 1) Draft 3 (APDA)

After entering the number, press the Return key. The parameter-setup screen for the call you selected
is displayed (Figure C-2). Enter a value (or select the default provided by pressing the Return key) for
each pararreter; each time you press Return, the cursor rooves downward one position in the
par.uneter block. The CUlSor does IIOt stop at any pararreter that is a resuh-Qnly value (that has no
input value).

Figure Cl Pararreter-setup screen

$lC-Get D1r Entry cIa·55 1 10110e call esc: maln menu

p_count: $OOOF input
ref_num: $0006 input

reserved: $0000 result
base: $0000 input

displacement: $0001 input
name_buffer: $000146AA result

FINDER. DEE'

entry_num: $0001 result
file_type: $00C9 result

eo!: $00000000 result
blocks_used: $00000038 result

create $57090100 result Tu 22Dec87 901
time and date: $03000B15 result
trIOdlf1catlon $58113400 result He 20Jan88 1752
time and date: $04000013 result

access: $00£3 result
aux_type: $00000100 result

fl1e_sys_ld: $0001 result
option_list : $00014850 result

Press return to exit to main men Error $0000: call successful

Note: If, while you are entering parametel>, you wish to aboat the call, press the Escape key-it
returns you to the main screen.

Pathnarne5 and other text strings are passed to and from GS/OS in buffel> referenced by pointel> in
the pararreter blocks. Therefore, to enter or read a pathname, you must provide a buffer for GS/OS
to read From or write to. In most cases, the Exerciser sets up a default buffer, pointed to by a default
pointer parameter (see, for example, the Create calD. The contents of the location referenced by
that pointer are displayed on the screen, below the parameter block. For convenience, you can
directly edit the displayed string on the screen; you needn't access the memory location itself.

. 3X) Volume 1: Applications and GSiOS Appendixes

8/31/88

GSiOS Referr!1lCll (Volume 1) . Dm/I3 (AIDA)

After you have entered all the required parameters, press the Return key once more to execute the
call. If everything has gone right, the parameter list now contlins any results returned by Gs/OS, and
the message' $0000 call successful' appears at the bottom of the screen. If a GS/OS error occurs, the
proper error number and message are displayed instead In addition, if an error occurs, a small 'c'
appears at the lower right comer of the screen, which indicates that the IIiicroprocessors carry bit has
been set

Other commands

The Exerciser has several other useful features.

8/31188

• Ust Directory (L,N): There are two items on the main screen that help you catalog a disk. The first
is the Ust command, which catllogs either a target directory or all online devices (see next item).
The second is the N option, which allows you to specify how many levels to display of subdirectories
and files within the target directory.

From the main screen, select the levels you want by pressing N and then using the number keys or
venical arrow keys to specify the desired number of levels. You can select any number from $00 to
$40. Press Rerum to enter your selection.

Pressing L repeatedly toggles the Us! command between listing a directory and listing devices. Press
L until 'Catalog a directory' appears after 'L - • on the main screen. Then press Return to execute the
command (press Escape to abort it).

• Ust Onllne: Devices (L): The Ust Online Devices command allows you quick access to the device
numbers, device names, and volume names of any devices currently connected to the system

Pressing L repeatedly toggles the Us! command between listing a directory and listing devices. Press
L until ·Ust Devices Online" appears after 'L - • on the main screen. Then press Return to execute the
command (press Escape to abort it). The device-list screen appears (Figure C-3).

Dev t on the screen is the acrual hex value that you would use for devNum in the parameter list for a
device call. Device Name and volume Name are the names as known to the system If the device
is a dCive with a volume that has been removed, the Status field will read "Offline".

Appendix C: The GSiOS Exerciser ~l

GSIa5 Referma (Volume 1) D1rJjl3 (APDA)

Device-list screen

L - List Oevices Online esC: main menu

Dev t Device Name Volume Name Status

SOOOl .APPLEDISK3. SA :SYSTEM.DISK
$0002 .APPLEDISK3.SB : SYSTEM. TOOLS
$0003 .CONSOLE
SOO04 .APPLEDISKS.2SA Offline
SOOOS .APPLEDISKS.25B Off line
$0006 .SCSI! :SCaSI
$0007 .DEV2
SOO08 .DEV3

Press return to continue: I

• Modify Memory 00: By using the Modify Memory command, you can inspect and change the
contents of any memory location.

8/31/88

When you press M the Exerciser prompts you for a full t1uee-byte address. Enter it and press Rerum;
the Exerciser gives you an 8<H:olumn display of one memory page (256 bytes), with 16 bytes of dara
per line (Figure C-4). The page contains the address you entered, and the inverse·video cursor
highlights the byte at that address. Using the arrow keys, you can move through the display; pressing
> or < displays the next or previous page.

To modify the contents of a memory location, move the cursor to it and retype the hexadecimal
value you want it to contain. Table C-l lists the hexadecimal values for all ASCn characters.

Press U to undo a keypress that has modified the data in memory.

:nz Volume 1: Applications and GSiOS Appendixes

. '---"

GS'OS Refmma (Volume 1) . Dro.f/ 3 (APOA) 8/31/88

FIgure C-4 Modify-memory screen

M - Modi fy the contents of memory esc: main menu

data _ buffQr: SOOO146AA value

01/4600- 20 20 20 20 00 00 00 00 9A 00 00 00 20 20 20 20
01/4610- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4620- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4630- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4640- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4650- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4660- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4670- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4680- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4690- 20 20 20 20 20 20 00 00 00 00 ~ 00 OA 00 46 49
01/46AO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 FI

01/4680- 4E 44 45 52 2E 44 45 46 20 20 20 20 20 20 20 20 NOER.OEF
01/46CO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4600- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/46EO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/46FO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Commands: arrow keys, >, <, U, a .. F

• VIsit the Monitor (R): The MOnitor program is a finnware tool for debugging and executing
programs. It is described in tbe Apple lIGS Firmware Reference. With tbe Monitor, you can inspect and
trodify the contents of memory, assemble and disassemble code in a limited manner, and execute
code in memory.

You can temporarily leave the Exerciser to use the Monitor program by pressing K from the main
screen. The command functions exactly like the Control Panel 'Visit Monitor" command and the
BASIC command 'call-lSI". When you are ready to rerum to the Exerciser, press Control-Yo

• QuIt the Exerciser (Q): To leave the Exercisel'-and rerum to the Finder or other StarbJp program
press Q from the main screen. Of course, you can also quit by selecting the GS/OS Quit call ($29 on
the main screen), filling out its parameters on the parameter-serup screen, and executing it.

Appendix C: The GSiOS Exerciser :t>3

GYOS Refemra (Volume 1)

Table C-l ASCll table

A D B B

nul 0

sob I

atI 2
eO< 3
eo! 4

enq5
ack6
bel 7
be 8
t. 9

If 10

yt II

If 12

cr 13

so 14

o OOOOOOOO

I 00000001

2 00000010

3 00000011
4 00000100

5 00000101

6 00000110

7 00000111

8 00001000

9 00001001

A 00001010

B 00001011

C 00001100

o 00001101

£ 00001110

.i 15 F 00001111

dIe 16 10 00010000

del 17 11 00010001

dcZ 18 12 00010010

dc3 19 13 00010011

dc4 20 14 00010100

aU 21 15 00010101

$)'II 22 16 00010110

db 23 17 00010111

12/1 24 18 00011000

em 25 19 00011001

sub 26 IA 00011010

...., 27 IB 00011011

f. 28 I C 00011100

8' 29 10 00011101

" 30 IE 00011110

\II 31 IF 00011111

A Q H D

'P 32 20 00100000

33 21 00100001

• 34 ZZ 00100010

, 35 23 00100011

S 36 24 00100100

" 37 25 00100101

a 38 26 00100110

39 27 00100111

(40 28 00101000

) H 29 00101001

4Z ZA 00101010

• 43 2B 00101011

44 2C 00101100

45 2D 00101101

46 ZE 00101110

/ 47 2F 00101111

o 48 30 00110000

, I 49 31 00110001

2 50 32 00110010

3 51 33 00110011

4 52 34 00110100

5 53 35 00110101

6 54 36 00110110

7 55 37 00110111

8 56 38 00111000

9 57 39 00111001

58 3A 00111010

59 38 00111011

< 60 3C 00111100

• 61 3D 00111101

> 62 3E 00111110

63 3F 00111111

3>1 Vdum: 1: Applications and GSiOS

Drr1/l3 (APDA)

A P H B

• 64 40 01000000

A 65 41 01000001

8 6Ii 42 01000010

C 67 -43 01000011

o 68 H 01000100

E 69 45 01000101

F 70 46 01000110

G 71 47 01000111

H 72 48 01001000

I 73 49 01001001

] 74 4A 01001010

K 75 4B 01001011

L 76 4C 01001100

M 77 40 01001101

N 78 4£ ,01001110

o 79 4F 01001111

P 80 50 01010000

Q 81 51 01010001

R 82 52 01010010

S 83 53 01010011

T 84 54 01010100

U 85 55 01010101

v 86 56 01010110

VI 87 57 01010111

X 88 58 01011000

Y 89 59 01011001

Z 90 5 A 01011010

I 91 58 01011011

\ 92 5C 01011100

I 93 50 01011101

• 94 5£ 01011110

95 5F 01011111

A D H B

96 60 01100000

• 97 61 01100001

b 98 62 01100010

c 99 63 01100011

d 100 64 01100100

e 101 65 01100101

f 102 66 01100110

g 103 67 01100111

h 104 68 01101000

105 69 01101001

j 106 6A 01101010

k 107 6B 01101011

lOB 6C 01101100

m 109 60 01101101

• 110 6£ 01101110

o III 6F 01101111

P 112 70 01110000

q 113 71 01110001

r 114 72 01110010

, 115 73 01110011

,116 74 01110100

u 117 75 01110101

v 118 76 01110110
w 119 77 01110111

x 120 78 01111000

Y 121 79 01111001

z 122 7A 01111010

123 7B 01111011

124 7C 01111100

125 70 01111101

- 126 7E 01111110

del 127 7P 01111111

Appendixes

8/31/88

GS'OS Referrmce (Volume 1) DTrifI3 (AnlA)

Appendix D GS/OS System Disks and Startup

This appendix lists the directories and principal files that make up a GS/os
system disk for. the Apple !Igs computer.. A typical system disk has all of these
rues plus others, which may be applications, desk accessories, utilities,
initialization mes, documents, or. other. data mes.

In some very restricted instances, it may be possible to fit an application and
its required system files onto a BOOK diskette; most applications, however.,
require two BOOK diskettes.

Appendix D: GS/OS System Disks and Startup 30S

8/31188

GYOS Reference (Volume 1) D7YJjt3(APDA)

Application system disks

Each application program or group of related programs comes on its own application system disk.
The disk has all of the system files needed to run that application, but it may not have all the files
present on a complete system disk. Different applications may have different system files on their
application system disks.

Table 2-1 shows the files that must be present on all application system disks.

Table D-I Directories and ftIes on a GS/OS system disk

Directory/File
Prodos

Appletalk/
Icons/

Finder .icons
Finder.def
System!

P8

GS.OS
START.GS.OS
FSTS/
System.setu p/

Tool.setup
Drivers/
Tools/

Fonts/
Desk.aces/

Start

Error.msg

Contents
Required: A simple loader that loads the START.GS.OS file and

executes it
Contains AppleTaIk setup files
Contains Finder-related information
Icons used by the Finder
Data used by the Finder
Required: Contains GS/OS and other important system files
Required: The GS/OS operating system and the System Loader
Required: The GS/OS loader and program dispatcher
Required: Contains all File System Translators
Required: Contains setup files that execute at system startup
Required: Initializes tool sets at startup
Contains GSiOS device drivers
Contains RAM-based tool sets: required if RAl\1-based tools are

needed
Contains font ftIes : required if fonts are needed
Contains desk accessories: required if desk accessories are

provided
The program automatically executed at startup; this should usually

be the Finder
Required: GS/OS error messages
Required if ProDOS 8 applications will be run from GS/OS

jX) Volume 1: Applications and GS/OS Appendixes

8/31/88

GYOS Reference (Volume 1) Draj/3 (APDA)

System startup from ProD OS volumes

Disk blocks 0 and 1 on an Apple IIGS system disk contain the boot code. The boot code is functions
identically for ProDOS 8, ProOOS 16 and GSiOS system disks. This aUows ProOOS 8 system disks to
boot on an Apple IIGS, and it also means that the initial part of the bootstrap procedure is identical
for aU three operating systems.

First, the boot fmnware in ROM reads the boot code (blocks 0 and 1) into memory and executes it.
For a system disk with a volume name represented by '/ ,

1. The boot code searches the disk's volume directory for the filSt me named PRODOS with the file
type $FF.

2. If the me is found, it is loaded and executed.

From this point on, the three operating systems behave differently. On a ProOOS 8 system disk, the
me named PROOOS is the ProOOS 8 operating system. On a ProDOS 16 system disk, the PRODOS
fIle is not the operating system itself; it is the operating system loader and program dispatcher. On a
GS/OS system disk, the PROOOS me contains only a stanup routine and me-system-specific
routines that are used by the operating system loader and program dispatcher. The operating system
loader and program dispatcher are contained in the file '/SYSTEM/START.GS.OS.

When it receives control from the boot code, '/PROOOS performs the foUowing tasks -

1. Checks to make sure irs running on an Apple IIGS with ROM version 01 or greater.

2. Loads the file '/SYSTEM/START.GS.OS.

The START.GS.OS me is divided into two parts: Gloader and GQuit. Gloader is the operating
system loader. It's temporary and is used only during system startup. GQuit is the program
dispatcher. It contains the code used for starting and quitting ProDOS 8 and GS/OS applications.

3. Transfers control to GLoader.

When it receives control, GLoader performs the following tasks:

• Puts up the GS/OS splash screen and initializes the Apple IIGS tools and the Memory Manager.

• Relocates the GS/OS program dispatcher to an area in memory where it will reside permanently and
relocates pan of the '/PRODOS fIle to an area in memory where it wiU reside permanently.

• Gets the name of the boot volume and the name of the start FST.

• loads the GS/OS operating system and Apple IIGS System loader (file' /SYSfEMlGS.OS) and then
instaUs the System loader.

• Loads the file '/SYSTEM/ERROR.MSG.

Appendix D: GSiOS System Disks and Startup :m

8/31/88

GSIOS Referrmce (Volume 1) Dmft 3 (APDA)

• Loads the start FST. The start FST must reside in the '/SYSTEMIFSTS subdirectory, must have a file
type of $BD, and must have the high bit of its auxiliary type set to O.

• Initializes GS/OS and installs the start FST.

• Loads and installs the rest of the FSTs in the '/SYSTEMIFSTS subdirectory. The ftles must be Apple
IIGS load ftles of type $BD. If bit 15 ofa file's auxiliary type is 1, the FST is not loaded.

• Sets prefIX 0 to the boot volume name, and prefIX 2 to '/SYSTEMlIlBS.

• GLoader selects the application to run by taking the following steps:

a. It first looks for a type $B3 ftle ruured '/SYSTEMISTART. Typically, that me should be the
Finder, but it could be any Apple IIGS application. If START is found, it is selected.

8/31/88

b. If there is no START me, GLoader searches the boot volume directory for a file that is either one
of the following types:

• a ProDOS 8 system program (type $FF) with the fllename extension .SYSTEM

• a GS/OS application (type $B3) with the menarne extension .SYS16

Whichever is found first is selected.

Note If a ProDOS 8 system program is found ftrs~ but the ProDOS 8 operating system (file
' /SYSTEMlP8) is not on the boot volume, GLoader then searches for and selects the first
ProOOS 16 application.

• Executes the file '/SYSTEMISYSTEM.SETUP/TooL.SETUP. The TooL.SETUP file must have file
type $86, and executes, in tum, every me (other than TOOL.SETUP) that it fmds in the
'/SYSTEMISYSTEM.SETUP subdirectory. The ftles must be Apple IIGS load ftles of type SB6 or $B7.
If the high bit of a me's auxiliary type is 1, the setup file is not executed.

• Installs all desk accessories it finds in the ' /SYSTEM/DESK.ACCS subdirectory. The files must be
Apple IIGS load ftles of type SB8 or B9. If Bit 15 of a me's auxiliary type is 1, the desk accessory is
not loaded.

Finally, GLoader makes a standard GS/OS Quit call to launch the selected application. It is GQuj~
not GLoader, that acrually loads and launches the selected application.

System startup from non-ProDOS volumes

GS/OS supports booting from non-ProDOS volumes. Special boot blocks have to be written out to
the boot volumes, as well as a boot file containing the startup routine and the file-system-specific
routines required by GLoader and GQuit. The boot flle is a replacement for the file PRODOS, which
is used when booting from ProDOS volumes.

Jll Volume 1: Applications and GS/OS Appendixes

GS-OS ReJerenC2 (Volume 1) Dnift 3 (APDA)

The boot blocks must load the boot me at location $2000 in bank $00 and then execute the boot me
by doing a JMP $2000. The boot blocks must make sure that MSLOT ($07f8) is set up to contain the
slot number of the boot device since this value will be needed by the boot me and GLoader. The
boot me must contain the following routines: Startup, ReadInFile, GetBootName and GetFstName.
These routines are described in the following sections.

The boot me must begin with a jump table that looks like this:
start
jmp
nap
de
de
de
de
ds
end

startup

i2'readinfile'
12 I get boot n arne'
12 I get f stname I
12'xxxx-jump_table'
2

, 3 bytes
; 1 byte of padding
; offset into table = 4

offset into table = 6
offset into table ~ 8
offset into table - 10

; offset into table = 12

The jump table must be the fIrst thing in the boot me so that when the boot me is loaded, the table
begins at location $2000. GLoader and GQuit use the table to call the routines in the boot me.

The entry at offset 10 must contain the size, in bytes, of the permanent part of the boot file. The
permanent part of the boot me consists of the jump table, the ReadlnFile routine, the GetBootName
routine and any internal routines andlor data required by ReadInFile and GetBootName. The Startup
and GetFstName routines are only used during boot time and so are temporary.

The boot me must be organized with the permanent code and data at the beginning of the load file
and the temporary code and data at the end of the load file. GQuit uses the size specified in the
jump table to determine how much of the boot me (beginning at location $2000) to save in memory
for later use. When GQuit is quitting from a ProDOS 8 application into a GS/OS application, it needs
to reload GS/OS. In order to do this, it relocates the saved portion of the boot file to location
$2000, calls the GetBootName routine to verify that the boot volume is in the boot drive, and then
calls the ReadInFile routine to read in the necessary files.

The entry at offset 12 must be set up by the Startup routine to contain the auxiliary type of the
START.GS.OS me. GLoader uses this value when it puts up the splash screen.

Startup (boot me routine)

The Startup routine must perform the following tasks:

8/31/88

1. Determine that it is running on an Apple IIGS with ROM version 01 or greater, and if no~ report a fatal
error.

2. Set the e, m, and x flags in the processor status register to zero to enable full native mode.

Appendix D: GS/OS System DiSks and Startup ?IJ1

GSiOS Kefemra (Volume 1) Dmf/3 (APDA) 8/31/88

3. Set the bank register to $00, set the direct register to $0000, and set the stack register to $01FF.

4. Obtain the boot slot number from MSLOT ($07f8) and save it in the permanent code area for later use
by ReadInFIle and GetBootNarne. Note that GLoader also uses MSLOT, so its contents must still be
valid when control is transferred to GLoader.

5. Load the fIle ·/SYSTEMISTART.GS.OS at location $6800 in bank $00.

6. Store the auxiliary type of the START.GS.OS file at offset 12 in the jump table.

7. Trnnsfer control to GLoader by doing a JMP $6800.

The St:l1tUp routine from the ProDOS boot fIle is included in this appendix as an example.

ReadInFile (boot file routine)

This routine finds the requested file, reads it into memory at the location specified, and returns the
eof, fIle type and auxiliary type. The pathname of the requested file is returned as a GS/OS string;
that is, it begins with a length word and the menames are separnted by colons. There is no leading or
trailing colon.

. The pathname does not include the volume name since this routine is called only to read from the
boot volume. Also, the St:I1tUp routine should have saved the boot slot number in the permanent
data area. For example, to load the me ·/SYSTEWGS.OS, GLoader will call this routine with the
partial pathname ·SYSTEM:GS.OS".

Entry and exit are in full native mode. The direct register, data bank register, and language card state
must be preserved.

The input parnmeters are as follows:

4 bytes space for EOF result

2 bytes

2bytes

4 bytes

4 bytes

2 bytes

space for auxiliary type result

space for me type result

pointer to partial pathname of me to read

pointer to buffer to read file into

return address

The output parameters are as follows:

4 bytes EOF

2 bytes auxiliary type

310 Volume 1: Applications and GS/OS Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA)

2 bytes me type

c ~ 0 if successful, c - 1 if error

A - contains error code if c - 1

GetBootName (boot flle routine)

The GetBootName routine returns the name of the boot volume. The retumed string rrrust begin with
a length word and rrrust contain a leading colon but not a trailing colon. The maximum length of the
volurre name is 32 characters. If the volume name is longer than 32 characters, an error should be
returned.

Entry and exit are in full native mode. The direct register, data bank register, and language card state
must be preserved.

The input parameters are as follows:

4 bytes pointer to space for volume name

2 bytes return address

The output parameters are as follows:

c ~ 0 if successful, c - 1 if error

A - contains error code if c ~ 1

GetFSTName (boot flle routine)

The GetFstName routine returns the filename of the FST that is associated with this boot file. For
example, the ProDOS boot file returns the name "PRO.FSl", which is the filename of the ProDOS
FST. The returned string must begin with a length word and must not contain any separators. The
maximum allowed length of the filename is 32 characters.

Entry and exit are in full native mode. The direct register, data bank register and language card state
must be preserved.

The input parameters are as follows:

4 bytes pointer to space for FST name

2 bytes retum address

The output parameters are as follows:

Appendix D: GS/OS System Disks and Startup 311

8/31/88

GYOS Reference (Volume 1) DrtJfl3 (APDA)

none

Sample boot me startup routine

The following sample code shows part of the ProDOS boot fIle startup routine.

startup st:art
using

100 9&

10ngi
on
on

At onset, we don't know what machine we are being run on.
If we're not being run on an Appl e JI GS we must hang with an
error message.

The following code will run on both the 65816 and 6502
processors to ensure a-bit processing.

tsx ;save stack pointer
lda IS3030

;required filler
:push $30 on s t ack

nap
pha
plp ;and retrieve for ful l a-bie mode

lonqa
longi

txs

off
off

:restore stack

The above code looks like the fo l lowing for a 6502 ...
(this code essentially does nothing o n a 6502)

tsx
lda IIS30
bmi nop
pha
plp
txs

;",,111 never be taken

lda romin
see
j sr idroutine
bes show err -
cpy ISOl
bee show_e rr

ibank in rom
;go 'into / /GS id routine with c set
;are we on a IIGS:
;no
; is rom revision 01 or greater?
;no

Ac t hi s point we must be in emulation mode on a lieS •

pea
pld

phk
plb

• 0000

3U Volume 1: Applications and GSiOS

;ensure direct page at $0 000

;set data bank to bank $00

Appendixes

8/31/88

G:lOS Reference (Volume 1) Draft 3 (APDA)

iThe id_sp routine reads MSLOT and sets up information used by ReadlnFile

cic
xce
rep
lonqa
10nq1

lda
tcs

'$30
an
an

t$Olff

;begin native mode
:begin 16-bit mode

iset stack to SOl!!

.; Now read in th~ */SYSTEM/START.GS.OS file.

pha
pha
pha
pha
pea
pea
pea
pea
jsr
bee
p}J.a
pea
pea
ldx
jsi

read_ok anop
pia
pia
sta
pla
pla

starcyathl-16
startyatn
o
start lac
readinfile
read_ok

$0000
startup_err
'$1503
$elOOOO

Now transfer control to START.GS.OS

:push 9 bytes for results

iPush poin_ter to partial pathname
;of file to be loaded
;push address of where file should
:be loaded
:find the file and read it in
:branch if no error
iPush error number
;push address of
;error messaqe
:eall SysrailHqr tool call to
; .report the error - doesn't return

; ignore filetype
:get auxtype
iand store at end of jump table
; ignore eot

;---
show_err

Enter this
Enter this

anop
longa
longi

routine
routine

php
lda
sta
sta
sta

aff
aff

with c-l far
with e-O far

romin
clr80vid
clraltchar
clr80col

wrong
wrong

system error.
ram error.

;save 'e' around setup stuff
;rom in for monitor'S home routine
;disable 80 column hardware
;switch in primary character see
;disable 80 column store

Appendix D: GSiOS System Disks and Startup 313

8/31/88

GSIOS Refemace (Volume 1)

jsr
jsr
jsr
jsr
plp

ldy
be.
ldy

anap
lda
be.
lda

print it2 anop
.t.
dey
bne

hang jmp

end

init
setvid
setnorm
home

not_a_9s
print_it
wrong_rom

not _d_9 s ,y
print_ it2
wrong_rom, Y

screen, y

pr!nt_ it

hang

Draft 3 (APDA)

;text pq l, text mode, 40 col window
:does a 'prto' (puts in coutl in csw)
;white chars on black background
;clear screen
:whicb message gets shown?

:get length of message

;qet length of message

;get character

:qet character

;store directly to screen

:cione

;---
data

:firmware entry points

idroutine equ
SQtvid equ
setnorm equ
inlt equ
home equ

; soft switches

clr80ccl equ
clreovld equ
clraltchar equ
romin equ

:misc. equates

screen
mslot
start_Ioe

;strings

equ
equ
equ

startyath de

Sfelt
Sfe93
$fe84
$fb2f
Sfe58

$cOOO
$cOOc
ScOOe
$c081

$05a8
S07f8
$006800

i2' 18'
dc c'SYSTEM:START.CS.OS'

tst_name de
de

12 '1'
c'PRO . FST'

314 Volume 1: Applications and GSiOS

:IIGS id routine
:reset output to screen
:normal whit e text on blk background
;text pg 1, text mode, 40 col window
;home cursor and clear to end of screen

;disable 80 column store
:disable 80 c e lume hardware
;normal le, f lashing ue
;enable rom read

:lett center of 40 column screen
islet t of boot device
;where START. GS.OS is loaded

;name of start FST

Appendixes

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

startup_err de i1' 40'
de c'Unable to load START.GS.OS file. Error-S'

msb on

not_a_qs de i1'35'
dc c'GS/OS REQOIRES APP LE IIGS HARDWARE ,

wronq_rom de i1'38'
de crGS / OS needs ROM Vers i on 0 1 or greater ,

end

Appendix D: GS/OS System Disks and Startup 315

GS/OS Reforena (Volume 1)

Appendix E Apple Extensions to ISO 9660

This appendix describes a protocol through which file-type information can be
added to CD-ROM files or other files in the ISO 9660 format (which does not
recognize me typing). With this protocol, ProDOS and Macintosh files can be
stored on compact discs-as valid ISO 9660 files-while retaining aU
information related to me type.

You may need to read this appendix if you are

• an Apple Developer working with ISO 9660
• a publisher of authoring tools for ISO 9660 discs

• a publisher of ISO 9660 discs

• a publisher of ISO 9660 receiving system software

. High Sierra support: ISO 9660 is the international file system standard for CD
ROM; it is based on the original High Sierra forma~ but is
not identical to it. The protocol described in this
appendix is nx:ant to apply to the ISO 9660 file system;
however, the High Sierra FSf (See Chapter 10 of this
volume) supports the protocol for High Sierra-formatted
fties also.

Appendix E: Apple Extensiom to ISO 9660 317

8/31/88

GYOS Referrma (VoIwne 1) DmjI3 (APDJl) 8/31/88

What the Apple extensions do

Creating an ISO 9660 CD-ROM disc containing ProDOS files or Macintosh hierarchical fIle system (HFS)
fIles can have great advantages: the large storage capacity of compact discs rrx:ans cost savings and
greater convenience when distributing large amounts of data, and the position of ISO 9660 as an
international standan:! IreaJlS that the ftles will be accessible on a large variety of machines. Unfortunately,
both the HFS and ProOOS ftle systems require information that the ISO 9660 ftle system does not support:
ProDOS requires a file type and an auxiliary file type, and HFS requires a fIle type, a file creator, and,
frequendy, an icon resource.

This appendix defines a protocol that extends the ISO 9660 specillcation. The protocol is designed to
both solve existing compatibility problems and allow for future expansion; at present, it has two principal
features :

• It permits inclusion of HFS-specillc or ProOO5-specillc information in files, without corrupting the
ISO 9660 structures. Discs created using the protocol are valid ISO 9660 discs and should function
normally on non-Apple receiving systems.

• It defmes a mechanism for preserving filenames across translations form ProOOS to ISO 9660 and
back, and gives suggestions for optimum translations of Macintosh ftIenames.

The protocol uses the systernIdentifier field in the Primary Volum: Descriptor for global
information, and the systemUse field in the directory record for file-specifIC information.

The protocol identifier

Discs that have been formatted with the Apple extensions to ISO 9660 are identified by their
protOCXll Identifier, which has the following characteristics:

Location: SysternIdentifier field in the Primary Volume Descriptor.

Size: 32 bytes. It is the entire contents of the SystemIdentifier field.

318 Volume I: Applications and GSiOS Appendixes

G!VOS Referrma (Volume 1) Drtzft 3 (APDA)

Contents:

Protocol jlags:

"APPLE COMPurER, INC., TYPE: • followed by the protocol flags. In
hexadecima~ the protocol identifier looks like this:

41 50 50 4C 45 20 43 4F 40 50 55 54 45 52 2C 20
49 4E 43 2E 2C 20 54 59 50 45 3A 20 3x 3x 3x 3x

The protocol identifier is considered valid if its first 28 bytes match the first 28
characters above.

4 bytes of nibble-encoded information (represented as "3x' in the previous
example). Nibble encoding is necessary in order to guarantee that the bytes
represent legal ISO 9660 a-charactm (printlble characters). The flag bytes are
numbered 0-3; flag-byte 0 is the byte following the space ($20). The bits of
each flag byte are numbered 0-7, 0 being the least significant. The flag bytes are
presently defmed as follows:

flag-byte 0:

ITIIIII beO

.... beO

ITIIIII be I

ITWtbe I

.... rved

Perform ProOOS filename ",,",formation.J

flag-byte 1:

ITIIIII be 0

must beO

mUSl be I

muslbe I

Appendix E: Apple Extensions to [SO 9660 319

8/31/88

GSla\" Referena (Volume 1)

flag-byte 2:

.... beO

.... beO

I11III be 1

.... bel

flag-byte 3:

_beO

IIIUIl beO

IIIU5I be 1

musbe 1

Apple J!JIenaiona...- nuni>er
(J in<Iialos thiJ vmionl

Drr1f13 (APDA)

The Directory Record SystemUse Field

Directory records in the ISO 9660 specification-have the foUowing format:

3I) Volume 1: Applicalioos and GSiOS

8/31/88

GYOS Reference (Volume 1) Dra/l3 (APDA)

byte DirectoryRcdLength
byte XARlength
struct ExtentLocation
struct DataLength
struct RecordingDateTime
byte FileFlags
byte FileUnitSize
byte InterleaveGapSize
long VolumeSequenceNwn
byte FileNameLength
char FileName (FileNameLength]
byte RecordPad
char SystemUse(SystemUseLengthl

The RecordPad field is present only if needed to make DirectoryRcdLength an even
number. If RecordPad is presen~ its value must be zero ($00).

The SystemUse field is an optional field; if it is prese~ its length (equal to
SystemUseLength) must be an even number.

The SystemUse field, when presen~ nrust begin with a signature word, followed by a one-byte
SystemUseID, followed by file-specific infonnation. The signature word allows a receiving
system to ensure that it can interpret the follOWing data correctly, and the SystemUseID
determines the type and format of the infonnation that follows.

The Apple signabJre word (AppleSignature) is defmed as '8 A' ($42 41).

Receiving systems nrust perform a simple calculation to determine if the SystemUse field is
present in any given directory record. lt is present if

DirectoryRcdLength - FileName Length > 34

Receiving systems should fust verify that the SystemUse field is presen~ then check for
AppleSignature before interpreting the SystemUseID.

Appendix E: Apple Extensions to ISO 9660 321

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

SystemUseID

SystemtrseID can have the values shown in Table E-1.

Table E-l

Value

$00
$01
$02
$03
$04
$05
$06
$07-FF

Defined values for Sy"temtrseID

MeaninK

(reserved)
ProOOS file_type and aux_type follow
HFS ftleType and ftleCrearor follow
HFS ftleType, fileCreator follow (bundle bit set)
HFS ftleType, fileCrearor, and ICN# resource (128-byte icon) follow
HFS fileType, fileCreator, ICN# resource follow (bundle bit set)
HFS flleType, fileCreator, Finder flags follow
(reserved)

Table E-2 defines the contents of the Systemtr"e field for each defined value of SystemtrseID.

Table E-2 Contents of Systemtrse field for each value of SystemUseID

Offset Contents

SystemUseID-ol (ProDOS):

$00-01 $4241 (AppleSignature)
$02 $01 (SystemUseID)
$03 ProOOS me type
$04-05 ProOOS aux type (LSB-MSB)'

SystemUseID-02 (HFS):

$Oo-m $42 41 (AppleSignature)
$02 $02 (SystemUseID)
$03-06 HFS fileType (MSB-LSB)
$07-{)A HFS fileCreator (MSB-r.sB)'
SOB (Padding for even length)

322 Volume 1: Applications and GSiOS Appendixes

8/31/88

GSiOS Reference (Volume 1) Draft 3 (APDA)

SystemUseID-D3 (HF5, bundle bit set):

$00-01 $42 41 (AppleSignature)
$02 $03 (SystemUseID)
$03-06 HFS fileType (MSB-LSB)'
$07-OA HFS fileCreator (MSB-LSB)'
SOB (Padding for even length)

SystemUseID-04 (HFS, icon):

$00-01 $42 41 (AppleSignature)
$02 $04 (SystemUseID)
$03-{)6 HFS fileType (MSB-LSB)'
$07-OA HFS fileCreator (MSB-LSB)'
$OB-8A HFS ICN# resource (MSB-LSB)'
$8B (Padding for even length)

SystemUseID-D5 (HFS, icon, bundle bit set):

$00-01 $42 41 (AppleSignature)
$02 $05 (SystemUseID)
$03-{)6 HFS fileType (MSB-LSB)'
$07-OA HFS fileCreator (MSB-LSB)'
$OB-8A HFS ICN# resource (MSB-LSB)'
$8B (Padding for even length)

SystemUseID~06 (HF5, Finder flags)":

$00-01 $42 41 (AppleSignature)
$02 $05 (SystemUseID)
$03-{)6 HFS fileType (MSB-LSB)'
$07-OA HFS fileCreator (MSB-LSB)'
$OB-OC HFS Finder flags (MSB-LSB)'

"(MSB-LSB) = the most significant byte occupies the lowest address, the least significant byte, the highest address;

(LSB-MSB) = the least significant byte occupies the lowest address, the mest significal1! byte, the highest address.

'"To fill the Finder /lags field here, premastering software can simply copy the finder /lags as retrieved by the HFS call

GetFInfo. Only bils 5 (always switch-launch), 12 (system file), 13 (bundle bit), and 15 (locked) are used. All other bits
are either ignored or always set by the FST. See Macintosh technical note .40 for more details about the Finder flags.

Appendix E: Apple Extensions to ISO 9660 323

8/31/88

G:/OS Reference (Volume 1) Draft 3 (APDA)

Fllename transformations

The rules governing permissible filenames are different under ISO 9660 than under either ProDOS or
Macintosh HFS. Therefore, one problem with putting ProDOS or HFS flles on an ISO 9660 disc is how
to rename them. Ideally there should be a simple, reversible transformation that can be applied to a
fllename to make it a legal ISO 9660 name, and reversed to restore the original ProDOS or HFS name.

Such a transformation exists for ProDOS and is given here. There is none for HFS, but guidelines to
minimize changes during transformation are listed.

ProDOS

Legal ProDOS fllenames differ from legal fIlenames under ISO 9660 in these ways:

• ProDOS fllenames allow multiple periOds; ISO 9660 flienames do not

8/31/88

• ISO 9660 requires that both of the separators period (.) and semicolon C;) occur in each filename, and
that the semicolon be foUowed by a version number. (This requirement is for nondirectory files only.)

The following steps constitute a reversible transformation that preserves ProDOS fllename syntax. That
means that an authoring tool can apply the transformation to any ProDOS file to get a legal ISO %60
fllename, and that a receiving system can reverse the transformation to hide from an application the fact
that a transformation has occurred. A user can therefore access the file using its original ProDOS
filename.

When creating an ISO 9660 disc from ProOOS source files, the authoring tool must perform the following
transformation on all filenames:

1. Replace aU periods in the ProOOS fllename with underscores. If the flle is a directory file, that
completes the transformation.

2. If the flle is not a directory file, append the characters '.;1" to the fllename. It is now a valid ISO
9660 filename.

After all filenames have been transformed, the authormg tool must set the ProDOS transformation bit in
the protocol identifier, described earlier in this appendix.

Table E-3 shows some examples of the transformation.

324 Volume 1: Applications and GSIOS Appendixes

'-.

GYOS Reference (Volume 1) Draft 3 (APDA)

Table E-3 ProDOS-to-ISO 9660 filename transformations

ProDOS filename

PRODOS
BASIC.SYSTEM
SYSTEM
DESK.ACCS
START.GS.OS

kInd of file

standard
standard
directory
directory
standard

ISO 9660 filename

PRODOS.;1
BASIC_SYSTEM.;1
SYSTEM
DESK_ACCS
START_GS_OS.;1

8/31/88

Volume name: The ProDOS volume name becomes the ISO 9660 Volume Identifier in the Primary
Volume Descriptor. It is a filename and, therefore, must be transformed like other
ProDOS filenames. It must be transformed as a directory name (periods replaced with
underscores).

In use, the receiving system can inspect the ProDOS transformation bit in the protocol identifier, and
handle the necessary conversions such that the Original ProDOS ftienames can be used to refer to all files
and directories on the volume. The receiving system performs the above transformation on user-supplied
filenames before searching for them on disc, and reverses the transformation before presenting filenames
to the user.

Remember that this transformation cannot be done on a file-by-me basis; it must be applied to every
file and directory on a disc.

Macintosh HFS

Because HFS me naming rules are very flexible, most HFS filenames are illegal in the ISO 9660
specification. Furthermore, no reversible transformation is possible without degrading
performance; unlike with ProDOS, there is no simple conversion from all valid Macintosh HFS
menames to valid ISO 9660 menames. To make the transformations as consistent as possible,
however, Apple recommends that authoring tools and receiving systems follow these guidelines
when performing HFS-to-ISO 9660 transformations:

1. Convert all lowercase characters to uppercase.

2. Replace all illegal characters, including periods, with underscrores.

3. If the filename needs to be shortened, truncate the rightmost characters.

4. If the me is not a directory me, append the characters '.;1" to the filename.

Such a transformation is not reversible, but if it is followed the results, will at least be consistent
across all mes and discs.

Appendix E: Apple Extensions to ISO 9660 325

Gros Re/emra (VoIwM 1)

ISO 9660 associated rues
An associated file under ISO 9660 is analogous to the resource fork of an HFS file. The format of
associated files is dermed in the ISO 9660 specification; the Apple extensions do not change the
format in any way. For clarity, however, this section teStaleS the definition and gives an example.

An associated file has these characteristics:

• It is one of two identically named files in a directory; the associated file has exactly the same file
identifier as its counterpan.

• It resides immediately before its counterpart in the directory.

• It has the associated bit set in the file flag:! byte of the directory record

The associated file is equivalent to the resource fork of an HFS file; its counterpart is equivalent to
the data fork of the same HFS file.

For example, if the file 'ANYFILE.:l" has an associated file, two adjacent directory records will be
named 'ANYFILE.:l". The fllS! one (the resource fork) will have the associated bit se~ the second
one (the data fork) will have the associated bit clear.

~ Volume 1: AppIicaIions and GSiOS

. 8/31/88

\ ,

GS'Of Re[erena (Volume 1) Dmf/3 (APD.t)

Appendix F GS/OS Error Codes and Constants

This appendix lists and describes the the errol> that an application can receive
as a result of making a GSiOS call.

Appendix F: GSiOS Enor Codes and CoIlSlanlS W

8/31/88

Grof Rejemru (VoIwne 1) Draft 3 (ARDA)

p •. _---_ '

Column 1 in Table F-1 lis~ the GS/OS error codes that an application can receive. Column 2 lists the
predefined constants whose values are equal to the error codes; the conslan~ are defined in the
GS/OS interface fIles supplied with development systems. Column 3 gives a brief description of what
each error means.

Table F-l GS/OSetTOIS

'!III!: ~~1;I!U D~,d"lfon

$01 badSystemCall bad GS/OS call number

$04 invalidPcount parameter count out of range

$07 gsosActive GS/OSisbusy

$10 devNot~ound device not found

$11 invali<:m.,vNum invalid device number (request)

$20 drvrBadReq invalid request

$21 drvrBadCode invalid control or slaWS code

$22 drvrBadParm bad call parameter

$23 drvrNotOpen character device not open

$24 drvrPriorOpen character device already open

$25 irqTableFI111 interrupt table full

$26 drvrNoResrc resources not available

$27 drvrIOError VO error

$28 drvrNoDevice no device connected

$29 drvrBusy driver is busy

$2B drvrWrtProt device is write protected

$2C drvrBadCount invalid byte count

$20 drvrBadBlock invalid block address

$2E drvrDiskSwitch disk has been switched

328 Volume 1: Applic2lions and GSiOS Appendixes

8/31/88

-.

GSIOS Refmmce (Volume 1) 8/31/88

"---.
Table F·l GS/OS errors (continued)

Code ~2D5fl!nl l2~gjgU2D

$2F drvrOffLine device off line or no media present
'", ' t'{i

$40 badPathSyntax . .
.<
.. ! ," ' • . invalid pathname syntax . "; '.: . ' ,~ , ':)1:"

$43 invalidRefNum invalid reference number
,:;;-

~ ~ . "

$44 pathNotFound subdirectory does not exist

$45 volNotFound volume not found
, :

$46 fileNotFound file not found

$47 dupPathname create or rename with existing name

$48 volumeFull volume full error

$49 volDirFull volume directory full ,.

$4A badFileFormat version error (incompatible file format)

$4B badStoreType unsupported (or inCO,Trect) storage type E
' . .

$4C eofEncountered end~f·fIle encountered :., . ..

$4D outOfRange position out of range '-",:. of..

$4E invalidAccess access not allowed

$4F buffTooSmall buffer too small

$50 fileBusy file is already open

$51 diX'Error directory error

$52 unknownVol unknown volume type ,

$53 paramRangeErr parameter out of range r .

$54 outOfMem out of memory .- . -::

$57 dupVolume duplicate volume name :

$58 notBlockDev not a block device

$59 invalidLevel specified level outside legal range

$5A damagedBi tMap block number !DO large

$5B badPathNames invalid path names for ChangePath

$5C notSystemFile not an executable file

.'--

Appendix F: GSiOS Error Codes and ~iS' i/'

stack: A list in which entries are added
(pushed) and rerooved (pulled) at one end
only (the lOp of the stack). causing them to
be removed in Iast-in, fust~ut (LIFO) order.
The tenD the stadI usually refers to the
patticuIar stack pointed to by the 65C816
stadt pointer.

standard Apple D: Any Apple n computer
that is not an Apple I1GS. SiJu previouS
meniJezs ci the Apple n family share many
chal3cteristics. it is useful to distinguish' lhem
as a group from the Apple IIGS; A standard
Apple II may also be caI1ed an 8-bil Apple II,
because of the 8-bit registe~ in its 6502 or
65(;02 microprocessor.

standatd file: A ruured collection of data
consisting of a single sequence of bytes.
Compare ateDded file, dfrec:tory me.

stUldard GS/OS C3IIs: Also caI1ed class 1
calls or simply GS/OS caJIs, the primary set of
applJcatJon-1eve1 calls in GS/OS. They
provide the full range of GS/OS capabilities
accessible to applkatioDS. Besides GS/OS
ca1ls, the other application-level ca1ls available
in GSiOS are ProDOS 16-compatible calls.

System loader: the program that loads all
other programs into memory and prepares
them for execution.

system service calls: Low-Ievd ca1ls in a
collllOOn format used by internal components
of GS/OS (such as FSTs), and also between
GSiOS and device drivm.

unclaimed Inkrrupt: An interrupt that is
not recognized and acted upon by any
interrupt handlers.

336 Volume 1: Applications and G&'OS

D1TJ/I3 (APDA,) 8/31/88

wJ:ume name The ruure of the volume
directory file on a disk oc.otber medium. All
pathnarnes. on.a volume start with the volwne
naIre. Voiwre names foUow the same rules as
odler filenames, excc:pt that a volume name
always StIrtS with a pathname separator.

zero page: The first page (256 bytes) of
nx:moryin a st3ruiard Apple II computer (or in
the Apple I1GS computer when running a
standard Apple n progIllD'l.). ~ the
high~rder byte of any address in this pan of
memory is zero, only a single byte is needed to
specify a zero-page address. Compare
d.lm:t page.

