GS

Joolbox
\%eferen“ce
7 Update,

~Beta Dratft

APDA# K2B005

E————
=

Apple.Il Apple IIGs TOOLBOX
Reference Update

APDA Draft
30 August, 1988

This document contains preliminary information
does not include:

sfinal editorial corrections
»final artwork

s final indexes

*a glossary

#final technical information

© Apple Computef, 1988

& APPLE COMPUTER, INC,

Copyright © 1988 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro-
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade-
marks of International Typeface
Corporation.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

Varityper is a registered trade-
mark, and VTG00 is a trademark,
of AM International, Inc.

Simultaneously published in the
United States and Canada.

ISBN 0-201-000x-x
ABCDEFGH]I}-DO-898

Preface

Chapter 1

Chapter 6

Chapter 7

Contents

<

What's in the Update v
Organization

o

Typographical conventions v

E

Apple Desktop Bus Tool Set 3

Audio Compression and Expansion Tool Set
About Audio Compression and Expansion 9
Uses of the ACE Tools 9

How ADPCM Works 10

Audio Compression and Expansion Tool Calls

Conirol Manager 23
New features in the Control Manager 25
Error corrections 26
Drawing controls 26

10

Contents

MNew Call 43

Chapter § LineEdit Tool Set 29
Error corrections 29

Chapter8 List Manager 45
Clarification 47
List manager definitions 47

Chapler? Memory Manager 5
New call 51

Chapter 10 Menu Manager 53
New Information 55
Menu Caching 56
Caching with custom menus 57
Error corrections 57

Chapter 10 MIDI Tool Set ®
! About the MIDI Tool Set 61
How the MIDI Tool Set works 61
Version requirements 62
Using the MIDI Tool Set 62
MIDI Tool Calls 63

Chapter 12 MiscellanecusTool Set &
New information 89

Chapler 13 Note Sequencer 91
About the Note Sequencer 93
The Note Sequencer’s command interpreter 93
Panterns and phrases 94
Sequence liems 95
Note commands 96
Control commands 97
Register commands 101
MIDI commands 103
Using the Note Sequencer 108
Sequence timing 108
Using MIDI with the Note Sequencer 109
A sample sequence 110
Note Sequencer calls 110

Appile lics Toolbox Reference Update

Chapter 14 Note Synthesizer 131
About the Note Synthesizer 133
Instruments 133
Envelope 134
Note Synthesizer envelopes 135

Wavelists 137

Using the Note Synthesizer 138
DOC memory 140

Note Synthesizer calls 140

Chapter 15 Print Manager 153
New information 155
New clls 155

Chapter 16 QuickDraw il 159
Error comrections 161

Chapter 17 QuickDraw Il Auxiliary 143
SpecialRect 166

Chapter 17 Sound Tool Set 167
New information 169

Error corrections 170

Chapter 19 Tool Locator 173
New information 175

Chapter20 Window Manager 177

New information 179
Alert Windows 179
Size Character 180
Tcon Number 181
Separator Character 181
Message Text 181
Button Strings 181

Termination of Alert String 182
Special Characters 182
Window Records 183
Error corrections 184
New Window Manager calls 184

Index of New Tool Calls 195

Contents iii

Index of dilfocl Calls 199

Iv Apple lies Toolbox Reference Update

— e

Preface

=
_—

What's in the Update

This update to the Apple IIGS Toolbox Reference contains new material
describing numerous changes to the Toolbox. There are four previously
undocumented tool sets, 65 new tool calls, and numerous corrections and
additions.

Organization

In order to make this update easy to use for those who are accustomed
to the Apple IIGS Toolbox Reference, it is organizéd in a similar manner.
The material is arranged in chapters that are devoted to individual tool
sets or managers. Chapters that update information about tool sets that
were documented in the first edition appear in the same order as the
corresponding chapters in the original reference. The chapters
documenting the four new tool sets appear in alphabetical order among
the other chapters. There are several tool sets that are essentially
unchanged; these tool sets do not appear in the update.

At the beginning of each chapter is a brief note about its contents; tool
sets that were previously documented are so noted, and the chapters
where their documentation can be found are mentioned.

Typographical conventions

 This update largely obeys the typographical conventions of the Apple
1IGS Toolbox Reference. New terms appear in boldface when they are
introduced. Parameter and field names are given in ftalics Sample code
listings appear in the Couriexr typeface.

Indexes

The update contains two indexes. First, there is an index of calls that
are new in this Update, arranged alphabetically. Next is an index listing
all tool calls, both those in the Apple [IGS Toolbox Reference, and those
documented in this update. This is included to make it easier to find a
particular call’s description, whether it is a new call, or one that was
previously documented.

vi Apple lics Toolbox Reference Update

Chapter 1

Apple Desktop Bus Tool Set

al=l ",

i

This chapter contains new information about the Apple Desktop Bus Tool Set

The complete reference to the Tool Set is in Volume 1, Chapter 3 of the
Apple IIGS Toolbox Reference.

Clarification

You can call AsyncADBReceive to poll a device using register 2, and it will
return certain useful information about the status of the keyboard. The
following information is returned in the specified bits of register 2:

Bit 5: 0-Caps-lock down
1-Caps-lock up

Bit 3: 0-Control key down
1-Control key up

Bit 2: 0-Shift key down
1-Shift key up

Bit 1: 0-Option key down
1-Option key up

Bit 0: 0-Open-Apple key down
1-Open-Apple key up

Apple Desktop Bus Tool Set

5

—_—————————
_— ———
=

Chapter 2

Audio Compression and -
Expansion Tool Set

This chapter documents the features of the new Audio Compression and
Expansion Tools Set (ACE Tools). This is a new tool set, not previously
documented in the Apple IIGS Toolbox Reference.

About Audio Compression and Expansion

The Audio Compression and Expansion (ACE) tools are a set of utility
routines that compress and decompress digital audio data. The tool set is
designed to supporn a variety of methods of audio signal compression, but at
present only one model is implemented. A knowledgeable programmer could,
however, create aliernative methods and use them with the ACE tools.

With the present model of compression supported by the ACE tools, you can
choose either of two compression ratios. You can compress a digital audio
signal to half its original size or to three-eighths its original size. The ratio
used is determined by a parameter of the ACE call that does the compression.

The obvious advantage of compressing an audio signal is that it takes up less
space on the disk and less time to transfer the data. A digital sample that is
compressed to half its original size occupies only half the space and takes
only half as long to transfer. Such a sample can load from the disk twice as
fast as the uncompressed version , and is much more economical to upload to
or download from a commercial computer network.

Uses of the ACE Tool Set

Software often includes sound effects, music, or speech. The problem with
digitized sound is that requires considerable storage space. A faithful
monophonic digitization of thirty seconds of an FM radio signal occupies
nearly a megabyte of disk space. A user might be somewhat reluctant to use a
program that occupies so much space to achieve sound effects. The ACE Tool
Set provides you with the means to compress digitized sound signals to
minimize this problem.

ACE presently supports Adaptive Differential Pulse Code Modulation
(ADPCM). This compression model assumes that audio signals tend to be
relatively smooth and continuous. If frequency and amplitude (pitch and
loudness) of a typical audio signal are plotted against time, the graph is
relatively smooth compared to a spreadsheet, a text document, or other
typical files that may contain arbitrarily distributed byte-values. As a result,
it is possible to construct a computable model of what the next sample in the
signal will probably look like. ADPCM constructs such 2 model by examining
a signal and comparing its predictions against actual observed values. It then
encodes the difference between its prediction and the actual value.

ACE Tool Set

9

ADPCM relies on the relative predictability of audio signals. If the changes
in an audio signal are too great or sudden, the value that ADPCM records
will be erroneous. In general, there is a certain statistically predictable
amount of error that appears in any signal that is compressed by this method.
The errors appear, not as distortions of the quality of the sound, but as pink
noise, or hiss, much like the hiss on ordinary cassette recordings, This makes
ADPCM compression suitable for many sound compression tasks, particularly
for sound effects or speech in games or business software, but not for very
high-fidelity reproduction. A signal compressed by the ADPCM method will
likely be too noisy for use in professional musical or film recording.

How ADPCM works

The ADPCM model assumes that any particular digital sample in a block of
audio data has a value that is relatively close to those on either side of it. In
fact, the noise in the reproduced signal arises from samples that vary more
than the model assumes, ADPCM predicts what the next value should be, and
compares it with the value that is actually there. The difference is encoded in
a value that is some number of bits in size, that size being specified by the
implementation code. With ADPCM the programmer can specify encoded
values either 3 or 4 bits wide, Since the original data is stored in 8-bit
samples, the compression rate is either 8 to 3 or 8 to 4, depending on which
size a particular program specifies.

Errors result when the difference between the original signal and the value
that ADPCM predicts is greater than can be encoded in the specified number
of bits. The encoded value then effectively becomes a random value, and so
becomes audio noise. If the target code is 3 bits wide, then the difference
observed by the compression algorithm is more likely to be out of range than
Edthf code size is 4 bits. Greater compression results in greater loss of
idelity.

As stated earlier, the fidelity loss sounds like hiss, not like a gross
distortion of the audio signal. Even using inaccurate predictive models,
ADPCM tends to produce hiss rather than harmonic distortion. The technique
tracks the gross characteristics of audio signals well even when the rate of
errors is high. A decompressed signal sounds faithful to the original, though
muffled by noise.

Audio Compression and Expansion Tool calls

The Audio Compression and Expansion Tool calls are all new calls, added to
the Toolbox since the first edition of the Reference was published.

10 Apple lies Toolbox Reference Update

ACEBootInit $011D

Applications must not make this call. ACEBootlnit performs any initializations
of the ACE tools that are necessary at boot time,

Parameters
This call has no input or output parameters. The stack Is unaffected.

C

extern pascal void ACEBootInit() inline(0x011D,dispatcher):;

ACE Tool et 11

ACEStartUp $021D

Initializes the ACE tools for use by an application. ACEStartUp sets aside a
region of bank $00, specified by ZeroPageloc, for use as the ACE tools’
direct-page. At present, ACE uses one 256-byte page of bank $00 memory as
its direct-page. Future versions of the ACE tools may use a different amount
of memory for the direct-page, so applications should determine the correct
size for the direct-page with a call to ACEInfo. The tool set's direct-page
should always begin on a page boundary.

Parameters

Stack before call

| previous contents __|
|- =zeroPageioc _| Word—Where to allocate direct-page space
|- ~| <-sp

Stack after call

| previous comterits _|
L -] <-sp

Errors
$1D01 ACElsActive
$1D02 ACEBadDP

C
extern pascal void ACEStartUp() ilnline (0x021D,dispatcher);

12 Appie lies Toolbox Reference Update

ACEShutDown $031D

Performs any housekeeping that is required to shut down the ACE tool seL

Applications that use the ACE tools should always make this call before
quitting. The application must allocate and deallocate direct-page space in
bank zero.

Parameters
This call has no input or output parameters. The stack is unaffected.

Errors
$1D03 ACENotActive

C

axtern pascal void ACEShutDown() inline({0=031D,dispatcher);

ACE Tool Sat

13

ACEVersion $041D

Retumns the version number of the currently installed ACE tool set. This call
can be made before a call to ACEStartUp. VersionInfo will contzin the
information in the standard format prescribed by Toolbox version-number
protocol,

Parameters
Stack betfore call
|— previous contents _.|

L space —| Word—Space for result

|- | <-sp

Stack after call

|- previous comtents _|

|- wversioninfo _| Word—Version number of ACE tool set
|- _| <-sp

C

axtern pascal Word ACEVersion() inline(0x041D,dispatcher);

14 Apple llas Toolbox Reference Update

ACEReset $051D

Resets the ACE tool set. This call is made by a system reset. Applications
should never make this call because tool set initializations appropriate to a
machine reset are performed. :

Parameters
This call has no input or output parameters. The stack is unaffected.

Cc

extern pascal void ACEReset () inline(0x051D,dispatcher);

ACE Tool Sat

15

ACEStatus

$061D

Returns a Boolean flag, which is TRUE (nonzero) if the tool set has been
started up, and FALSE (zero) if it has not. This call can be made before a call

to ACEStartUp.

Parameters

Stack betore call

|- previous contenss _|
|- space f
o= =]

Stack after call

|— previous contents _|
|- activeFlag 1

c

Word—Space for result
<-5P

Word—Boolean indicating whether tool set is active
<=-S5P

extern pascal Word ACEStatus() inline(0x061D,dispatcher):

16 Apple lics Toolbox Reference Update

ACECompBegin $0B1D

Prepares the ACE tools to compress a new audio sequence. After
ACECompress completes the process of compression and returns, the ACE
tools normally save certain relevant state information so that subsequent
calls to ACECompress can be used on succeeding parts of the same audio
sequence. It is often desirable to break a long audio signal into smaller parts
for compression. The preservation of appropriate state variables allows a call
to ACECompress to compress part of such a signal and then, for a subsequent
call, to continue the compression process where the previous call left off.

When a program calls ACECompress to process 2 new Audio sample, it should
call ACECompBegin to ensure that all saved state information is cleared and
that ACECompress is starting with a “clean slate." When an application is
compressing a long audio sequence as a number of smaller pieces, it should
call ACECompBegin only before the first sub-sequence. Thereafter, the
application should not make this call until all parts of the sequence have
been processed. The state information that ACE preserves between calls
allows ACECompress to process subsequent blocks using appropriate
information from previous ones.

Call ACECompBegin only before compressing the first sequence of a series of
sub-sequences, or before compressing a single sequence that is not part of a
longer sequence.

Parameters
This call has no input or output parameters. The stack is unaffected.

Errors
£$1D03 ACENOtActive

C
' extern pascal void ACECompBegin() inline(0x0B1D,dispatcher);

ACE Tocl Set 17

ACECompress $091D

Compresses the equivalent of NBlks of blocks of digital audio data and
stores them at the specified location. The data to be compressed are located
the equivalent of SrcOffset bytes beyond the location specified by the Src
handle. The resulting compressed data are stored the equivalent of
DestOffset bytes beyond the location specified by the Dest handle. The size
of the source data is the equivalent of VBIEs*512 bytes. The data have been
compressed using the method specified by the Method parameter; for the
supplied ACE ADPCM methods 1 and 2, the size of the resulting data is
(NBilks*64*(5-Method)).

¢ Note: Because ACECompress is guaranteed to reduce the size of every byte of
source data, the resulting data can be stored in the same place as the source
data. The source and destination locations in RAM can be the same.

Important

The nolsier a sampled signal is, the noisler the sample compressad using ADPCM
will be, Any nolse that is infroduced Inte the signal produces discontinuities in
the oudlo data. and couses emors In the compression and expansion process. For
this reason. any editing. equdlization, or other sound-procassing effects should
be applled to the original signal bafore It s compressed. ADPCM compression
should be fhe last process applied to an audio signal before It Is stored on the
final disk.

Parameters

Stack before call
| previous contents _|

Jes Src —.| Long—Handle to the source data

| -

|- Srcoffser _| Long—Offset from Src to the actual storage location
- =]

g Dest —| Lomg—Handle to storage for the resulting data

= =

|~ DestOffset _| Long—Offset from Dest to the actual storage location
|- NBlks —| Word—Number of 512 KB blocks of data

e Method .| Word—Method of compression

| . | <-sp

18 Apple liss Toolbox Reference Update

Stack after call

|- previous contents _|
— —| <-sp

$1D05 ACEBadMethod
$1D06 ACEBadSrc
$1D07 ACEBadDest
$1D08 ACEDataOverlap

axtern pascal void ACECompress() inline (0x0%1D,dispatcher);

ACE Tool Set

19

ACEExpand $0A1ID

Decompresses a previously compressed Audio sample, using the method

_ specified by the Method parameter, and stores it at the specified location.
Unlike ACECompress, ACEExpand cannot store its results in the same
location as its source since the resulting data is 2 to 2.67 times as large as
the source.

Parameters

Stack before call

| — previous contents _|

= =

1 Sre —| Long—Handle to the source data

- A

|—= SrcOffset | Long—Offset from Src to the actual storage location
L o]

S Dest —| Long—Handle to storage for the resulting data

- -

|- DestOffset | Long—Offset from Dest to the actual storage location
L NBlks _| Word—Number of 512 KB blocks of data

k. Method -] Word—Method of compression

|— ~| <-sp

Stack ofter call

| previous comtents _|

- ~| <-sp

Errors

$1D05 ACEBadMethod
$1D06 ACEBadSrc
$1D07 ACEBadDest
$1D08 ACEDataOverlap

o

extern pascal void ACEExpand() inline(Ox0AlD,dispatcher);

20 Apple lles Toolbox Referance Update

ACEExpBegin $0C1D

Prepares ACE to expand a new sequence. Like ACECompBegin, ACEExpBegin
clears any stored state information from previous calls to expand compressed
data. A large compressed sample can be decompressed by processing it as a
series of sub-sequences with repeated calls to ACEExpand, because certain
appropriate state variables are preserved from call to call. If you are calling
ACEExpand to work on a new sequence which bears no relation to any other
compressed sequence, or to expand a short sequence in just one call to
ACEExpand, you should make this call first to clear these state variables. If,
on the other hand, you are making a call to ACEExpand to decompress a
sequence that is a part of a longer sequence and is not the first sub-
sequence, you should not make this call first, because it will throw away all
information that ACE has recorded about the previous sequences.

Parameters
This call has no input or output parameters. The stack is unaffected.

Errors
$1D03 ACENotActive

C
extern pascal void ACEExpBegin() inline (0x0C1D,dispatcher);

ACE Tool Set 21

ACEInfo $071D

Returns certain information about the currenty installed version of the ACE
tools. This call can be made before a call to ACEStartUp. The InfoltemCode
parameter specifies what information the call is to returmn. At present, the
only valid value is 0. This specifies that the call will return the size in bytes
of the direct-page that ACE requires.

Parameters

Stack before call

| previous contents _|

- -

|— space —| Long—Space for result

|- infoltemCode _| Word—What type ofinfo to return
L -| <-sp

Slack after call

| — previous contents _|

L= -

|- mfoltemvalue _| Long—Specified information
|- -l <-sp

Errors
$1D04 ACENoSuchParam

c

extern pascal LongWord ACEInfo() inline (0x071D,dispatcher);

22 Apple lies Toolbox Reference Update

——

==
Chapter 3
e

Control Manager

This chapter documents new features and information about the Control
Manager. The complete Control Manager documentaion is in Volume 1,
Chapter 4 of the Apple IIGS Toolbox Reference.

New features in the Control Manager

The Control Manager has the following new features:

Colors in control tables now use all four color bits in both modes; they
formerly used only bits 0 and 1 in 640 mode. For any applications that
use color controls in 640 mode, the effect is that controls will be a
different color. This change was made so that dithered colors can be used
with controls.

The barArrowBack entry in the scroll bar table was never implemented as
first intended, and is now no longer used.

The Control Manager preserves the current port across Control Manager
calls | including those that are passed through other tools, such as the
Dialog Manager.

The Control Manager no longer changes the following fields in the port
of a window that contains controls:

bkPat background pattern
pnLoc pen location

pnSize pen size

pnMode pen mode

pnPat pen pattern

pnMask pen mask

pnVis pen visibility
fontHandle handle of current font
fondD ID of current font
fontFlags font flags

txSize lext size

txFace text face

txMode text mode

spExtra value of space extra
chExtra value of char extra
fgColor foreground color
bgColor background color

The Control Manager uses the state of the window port to compute the
size of control bounds RECTs when creating a control.

The Control Manager uses the new SpedialRect call if it is available,
instead of making separate calls to FrameRect and FillRect.

Control Manager 25

Error corrections

This section explains corrections and improvements that have been made to
Control Manager routines.

Drawing controls

The following list contains descriptions of changes the Control Manager's
facilities for drawing controls:

* TestControl returns a zero if an invisible or inactive control is selected.
» MoveControl does not make invisible controls visible when moving them.
» SetCtiTitle redraws the titles of controls.

* The grow box control now has its own color table. Formerly this control
shared the simple button default color table. Because of this a size box
was drawn as a single black box. The highlighted grow box now appears
as a white icon in a black box.

The previous grow box default color table looked like this:
50000 Black outline for box
$00F0 Not highlighted: black outline in white interior
$0000 Highlighted: black outline in black interior
The new grow box default color table looks like this:
$0000 Black outline for box
$00F0 Not highlighted: black outline in white interior
3$000F Highlighted: white outline in black interior

= The color table for the size box control in the Apple [IGS Toolbox
Reference is incorrect. The correct table follows, with new information in
boldface.

growOutline WORD Color of size box’s outline:
Bits 8-15 = Zero
Bits 4-7 = outline color
Bits 0-3 = Zero
growNorBack WORD Color of interior when not highlighted
Bits 8-15 = Zero
Bits 4-7 = background color
Bits 0-3 = jcon color
growSelBack WORD Color of interior when highlighted

Bits 815 = ZICTO
Bits 4-7 = background color
Bits 0-3 = icon color

26 Apple ligs Toolbox Reference Update

Miscellaneous
The following additional changes have been made to the Control Manager:

s On page 4-76 of the Reference, in the section that covers the
SetCtParams call, it states that the call *"Sets new parameters to the
control's definition procedure..." This description is misleading; the call
does not directly set the parameters. Rather, it sends the new parameters
to the control's definition procedure, unlike SetCtdValue, which actually
sets the appropriate value in the control record and then passes the value
on to the definition procedure.

= The current version of the Control Manager maintains the required
relationship among the value, view, and size fields of a scroll bar record.
In earlier versions of the Control Manager it was the responsibility of
the application to ensure that the value field never exceeded the quantity
(size-view). The Control Manager now adjusts the value or size field if
the other quantities are set to invalid values, For example, if view = 30
and size = 100, then the maximum value allowed is 70. If an application
sets the control value field to 80, the Control Manager adjusts size to
110. If value = 70 and the application sets size to 90, the Control Manager
adjusts value to 60. view can also be changed in a way that invalidates the
three settings. In the example mentioned before, in which value = 70,
view ;030, and size = 100), setting view to 40 will cause value to be
set to 00,

Control Manager 27

=
=

Chapter 4

Desk Manager

This chapter documents new features of the Desk Manager. The complete
reference to the Desk Manager is in Volume 1, Chapter 5 of the Apple IIGS
Toolbox Reference.

New features in the Desk Manager

It is now possible for 2 New Desk Accessory(NDA) to be a modal dialog box.
When an NDA is opened it returns a pointer o its window. The Desk
Manager saves this pointer and marks the NDA open. Subsequent attempts to
open the NDA simply select the open window until the NDA is closed. The
current version of the Desk Manager checks the returned window pointer,
and if its value is zero (if it is a null pointer) then the Desk Manager does
not mark the NDA open. A programmer can therefore write an NDA that
opens a modal dialog box when chosen. When the dialog box is dismissed,
the NDA can be chosen again without having been explicity closed.

Desk Manager 31

E==————
=——_
Chapter §
= = -

Dialog Manager

This chapter documents new features of the Dialog Manager. The complete
reference to the Dialog Manager is in Volume 1, Chapter 6 of the Apple lIGS
Toolbox Reference.

Error corrections

This section explains changes that have been made to correct problems with
the Dialog Manager, and with its documentation in the Apple UGS Toolbox
Reference.

+ The documentation for SetDltemType on page 6-82 of the Toolbox
Reference says that the call is used to change a dialog item to a different
type. In fact, SetDitemType should only be used to change the state of an
item from enabled to disabled or vice-versa.

* Getltext formerly always stored at least 3 bytes of data into the resultPtr
passed to it. This posed a problem if the editline item was only one
character, meaning only two bytes should be stored: one for the length
and one for the character itself. This has been fixed.

* GetNewModalDialog no longer crashes when passed a nonzero refcon
value.

= IsDialogEvent now correctly claims all window control events.

» HideDITem, ShowDItem, GetDItemValue, EnableDItem and DisableDItem
no longer crash with invalid item IDs.

« Several Dialog Manager calls failed if given invalid item IDs. This has
been fixed. The calls affected are

SetDItemValue
GetDltemType
SetDltemType

* When paramText characters (A0 through A3) were used at the end of a
line, garbage characters were appended. They now work correctly.

* DialogStatus formerly returned a value of "active’ after the Dialog
Manager had been shut down. This has been fixed.

* Certain Dialog Manager and LineEdit calls assumed that foreground and
background colors in the applicable grafPort were correctly set. This is
actually only true if other color controls have previously been drawn.
This problem has been fixed. The affected calls are

StatText
LongStatText
LineEdit drawing routines.

Diacleg Manager 35

Chapter 6

Event Manager

This chapter documents new features of the Event Manager. The complete
reference to the Event Manager is in Volume 1, Chapter 7 of the Apple lIGS
Toolbox Reference.

New call

SetAutoKeylimit is a new call in the Event Manager.

SetAutoKeyLimit $1A06

Controls how repeated keystrokes are inserted into the event queue.
The default value for the limit is zero, which specifies that autckey
events are inserted only if no other events are already in the queue.
newlimit determines how many autokey events must be in the event
queue before PostEvent ceases to add them. If newlimit is zero, then
the default condition is maintained: PostEvent will not add autokey
events unless the queue is empty. If the newlimit is 5, then PostEvent
will add 5 autckey events to the queue before it reverts to the rule
that no more autokey events are to be posted.

Parameters

Stack betore call

| — previowus contents _| .

|- newLimit _| Word—Liimit for inserted autokey events
. —| <-sp

Stack after caill

|- Previous contents _|
L | <-sp

C

extern pascal void SetAutoKeyLimit ();

Event Manager

e T T —————

Chapier

Font Manager

This chapter documents new features of the Font Manager. The complete
reference to the Font Manager is in Volume 1, Chapter 8 of the Apple /IGS
Toolbox Reference.

New features in the Font Manager

The current version of the Font Manager incorporates several changes. In
previous versions, FMStartUp opened each font file in the FONTS folder, and
constructed lists of information for all available fonts. These lists contained
font IDs, font names, and so forth for every font in every file in the FONTS
folder. The present version of the Font Manager does this same work the

first time it starts up, but caches all the information it compiles in a file
called FONT.LISTS in the FONTS folder.

The next time the Font Manager starts up, it checks all the creation and
modification dates and times in font files against the information in
FONT.LISTS.It compile new FONT.LISTS information only if it finds new font
files or other evidence of change. Otherwise, it simply starts up with the
information stored in the LISTS file. In most cases, because it doesn’t have to
open every font file, the Font Manager can start up much more quickly.

New cadill

The new call InstallWithStats is provided to simplify the process of installing
fonts. It allows an application to preserve certain information that is normally
lost during font installation.

InstallWithStats $1CIB

Installs a font and returns information about that font. When an application
requests the installation of a font, the Font Manager attempts to install the
requested font, but it may not be available. In such cases, the Font Manager
will install the closest match it can find to the requested font.

Font Manager 43

InstallWithStats installs a font just as if the application had called
InstallFont, but it returns a FontStatRec in the buffer pointed to by
ResultPtr. This record contains the ID of the installed font, which may
be different from the font requested. It also contains the purge status
that the font had before it was installed. Since purge status can be
changed by installation, this information can make it easier to restore a
font's purge status. If you need to know an installed font's purge status,
use FindFontStats.

Parameters

Stack before call

|- previous contents _|

= |

|- desirediD —| Long—FonuD of desired font
|-~ scaleword _| Word—Desired font-size

- -

L. resultPtr —| Long—Pointer to result of call
= _| <-sp

Slack after call

| — previous contents _|

|— _| <-sp

C
extern pascal void InatallWithStats() inline(0x1Cl1B,dispatcher);

44 Apple liss Toolbox Reference Update

List Manager

L ™

This chapter documents new features of the List Manager. The complete -
reference to the List Manager is in Volume 1, Chapter 11 of the Apple IIGS
Toolbox Reference.

Clarification

The Reference states that a disabled item of a list cannot be selected. In fact,
a disabled item can be selected, but it cannot be highlighted. The List
Manager provides the ability to select disabled (unhighlighted) items so that
it is possible, for instance, for a user to select a disabled menu choice as part
of a help dialog.

Member text is now drawn in 16 colors in both 320 and 640 mode,

List Manager definitions

disabled Bit 6 of the list-item's memFlag field is set. Disabled items
appear dimmed and cannot be highlighted.
enabled Bit 6 of the list-item's memFlagfield is clear, Enabled items

appear normal and can be highlighted.

sclected Bit 7 of the list-item's memFlag field is set. This bit is set
when a user clicks on the list-item, or the item is within a
range of selected items. A selected item only appears
highlighted if it is also enabled.

highlighted A member of a list only appears highlighted when it is both
selected and enabled. This means that bit 7 of the memFlag
field is 1 and bit 6 is 0. A highlighted member is drawn using
the highlight colors.

Ust Manager 47

o

———
Chapter 9
———————

Memory Manager

e

This chapter documents new features of the Memory Manager. The complete
reference to the Memory Manager is in Volume 1, Chapter 12 of the Apple
IIGS Toolbox Reference.

New call

RealFreeMem is a new Memory Manager call designed to provide accurate
information about available memory.

RealFreeMem $2F02

Returns the number of bytes in memory that are free, plus the number
that could be made free by purging. FreeMem only returns the number
of bytes that are actually free, ignoring memory that is occupied by
unlocked purgeable blocks. Since unlocked blocks of allocated memory
can be freed by purging, FreeMem does not provide an accurate picture
of the memory that is actually available. RealFreeMem provides a more
accurate value,

Parameters

Stack belore call

| previous contents _|
- =]

|- space | Long—Space for result

= ~| <-sp

Stack after call
| previous contents _|

- -
|~ freeBytes —| Long—Number of available bytes in memory

|— ~| <-sp

C

extern pascal Word RealFreeMem() inline (0x2F02,dispatcher);

Memeory Manager

=

Chapter 10
E==———

Menu Manager

-l
175

This chapter documents new features of the Menu Manager. The complete
reference to the Menu Manager is in Volume 1, Chapter 13 of the Apple UGS

Toolbox Reference.

New Information

This section lists several new features of the Menu Manager, and some
information that was not previously clear.

Menus in windows can now display the Apple character (ASCII $14).
Menus now use their outline color for lines which separate menu items.

The NewMenuBar call automatically sets bit 31 of the CtlOwner field in
the menubar record, if the designated menubar is a window menubar, and
the value passed for the window is not zero.

The Menu Manager’s justification procedures adjust for menubars in
windows. Menus will be moved to the left if they would otherwise
appear to the right of the menubar's right end.

The defauit menubar has the following coordinates: top = 0; left = 0;
height = 13; width = the width of the screen.

MenuShutDown does not return an error if the Menu Manager has already
been shut down.

The CalcMenuSize call uses the newWidth and newHeight parameters to
compute a menu's size. These parameters may contain the width and height
of the menu, or may contain the values $0000 or SFFFF. A value of $0000
tells CalcMenuSize to calculate the parameter automatically. A value of
SFFFF tells it to calculate the parameter only if the current setting is
zero.

The effect of all three uses:

1. Pass the new value: The value passed will become the menu’s size.
Use this method when a specific menu size is needed.

2. Pass 30000: The size value will be automatically computed. This is
useful if menu items are added or deleted, rendering the menu's size
incorrect. The Menu's height and width can be automatically adjusted
by calling CalcMenuSize with newWidth and newHeight equal to
50000.

3. Pass SFFFF: The width and height of a menu is zero when it is
created. FixMenuBar calls CalcMenuSize with newWidth and
newHeight equal to S$FFFF to calculate the sizes of those menus with
heights and widths of zero.

Menu Manager 55

Menu caching

The current version of the Menu Manager, on System Disks versions 3.2 and
later, introduces new menu caching features. Menu caching is designed to
provide faster display of menus under certain circumstances. When a menu is
drawn on the screen, the area of the screen that it covers is copied into a
buffer. When the menu goes away, the contents of the buffer are copied back
to the screen.

With the menu caching feature, when the saved screen image is copied back
to the screen, the menu that goes away is copied into the buffer. In other
words, the Menu Manager swaps the menu image with the screen image.
Therefore, the next time that menu is pulled down, the Menu Manager can
copy it from the buffer instead of drawing a new image.

If the menu image changes, for example, an item is disabled or the items on
the menu change, then the cached image is inaccurate, and the Menu Manager
must redraw the menu. In those cases where a menu image does not change,
the menubar can respond to the user more quickly.

Table 1 Calls that can change a menu image
CalcMenuSize
CheckMItem
DeleteMItem
DisableMItem
EnableMItem
FixMenuBar
InsertMItem
MenuNewRes
SetBarColors
SetMenuFlag
SetMItem
SetMItemFlag
SetMItemMark
SetMItemName
SetMItemStyle

Menu caching should not increase memory requirements since menu images
are purgeable when not displayed on the screen.

This menu caching scheme should work properly with all existing standard
menus. You will have to alter custom menus, however, so that they can take
advantage of menu caching. Custom menus will still function normally, as long
as they do not change the menu record directly, but they will not be able to

take advantage of the menu caching scheme to speed up display.

Caching does not work with menus in windows, so the InsertMenu call
automatically disables caching for such menus.

54 Apple lies Toolbox Reference Update

Caching with custom menus

Bit 3 of the MenuFlag field in 2 menu record indicates whether a menu's
definition procedure knows about caching. A value of 1 indicates that the
menu in question works correctly with caching. A custom menu that uses
caching must define a menu record that sets this flag, and allocates an extra
field, a handle to the cache in which the menu image will be stored. (See
Table 2.

Table 2 Fleids in a cachable menu record
MenulD WORD
MenuWidth WORD
MenuHeight WORD
MenuProc LONG

MenuFlag BYTE ; Bit 3 = 1 to enable caching
MenuRes BYTE
Firstitem BYTE

NumOfitems BYTE
TitleWidth WORD
TitleName LONG

MenuCache LONG ; New field in cachable menu records
-‘Handle to cache

The FixMenuBar call automatically allocates a cache for the defined menu if
the caching flag is set. *

Error corrections
This section explains some corrections that were made to the Menu Manager.

* CalcMenuSize has been modified so that it takes text styles into account
when calculating the width of a menu.

* Display of menu titles has been corrected so they will be arranged
properly relative to the left side of the menubar RECT.

* The CilOwner flag of a menu inside a window must be negative (bit 31
must be set). This has always been true, but has been undocumented.

Menu Manager 57

Chapter 11
=
MIDI Tool Set

This chapter documents the MIDI Tool Set. This is 2 new tool set and was not
documented in the Apple lIGS Toolbox Reference.

About the MIDI Tool Set

One of the most interesting uses that has been invented for electronic
circuitry is control of digital musical instruments, MIDI stands for Musical
Instrument Digital Interface. It is the standard communications protocol that
the electronic music industry uses to connect various digital instruments, A
synthesizer or sequencer properly equipped with a MIDI bus can control or
be controlled by another such device, so that a musician can connect
complicated groups of MIDI instruments and control them easily.

If you add a suitable MIDI interface to your personal computer, you can
connect it to a MIDI network. With appropriate software, the computer can
control the network, and can record, edit, and play musical sequences, You
can store musical data on disk and transfer them across telecommunications
networks. The Apple 1IGS has the capacity, with the MIDI tools, to control
external MIDI instruments.

How the MIDI Tool Set works

The MIDI tools consist of a group of utilities that enable you to collect
incoming MIDI data from the designated serial port, store the data in
designated buffers, process them, and play them back at will. The tools are
hardware independent. They use separately loaded device drivers, and so the
MIDI tools themselves don't incorporate any assumptions about the nature of
the MIDI interface that they might be driving. At present the Apple IIGS
system software includes drivers for two MIDI interfaces: Apple. MIDI, for
the Apple MIDI Interface, and Card6850.MIDI for plug-in ACIA cards, such as
the Passport MIDI interface.

The MIDI tools provide fast response to MIDI data transfers and an accurate
clock for time-stamping MIDI packets. The tools allocate one of the 14
general purpose generators on the Digital Oscillator Chip (DOC), and the
first 256 bytes of DOC RAM, for use as a clock. This clock counts intervals
of 76 microseconds, which allows fine timing of MIDI input and output data.
It is sufficient to record and accurately reproduce large chords played on a
MIDI keyboard. MIDI data may arrive as quickly as 1 byte every 320
microseconds, but the Apple IIGS can receive the data without loss as long as
no running code disables interrupts for more than 300 microseconds. The tool
set also provides a polling scheme so that it can receive MIDI data without
loss even when interrupts must be disabled for longer times.

MIDI Tool Set 61

Interrupts drive the MIDI tool set's functions, so the computer’s CPU can be
occupied with other tasks as MIDI data are received or transmitted in the
background. Because the interrupt scheme is a part of the MIDI ool set's
design, there is no need for an application programmer to provide interrupt
handlers. There are also error-checking mechanisms, and the tools will detect
and report several different types of MIDI errors. The tool set can handle
MIDI transfers as raw data, performing no interpretation, or it can assemble
the data into MIDI packets, with packet-length and time stamps. The tool set
can also returmn MIDI packets in the Standard MIDI File Format, established
by the MIDI Manufacturers’ Association in January 1988,

You can process MIDI information in real time, responding to keyboard
control or directing immediate output from the computer to a MIDI
instrument, or you can record MIDI data for batch-processing and later
playback. This gives an application the power to act either as a sequencer and
sequence editor, or a real-time controller for directing MIDI program and
patch changes. The tool set is able to distinguish between MIDI notes that it
has initiated and those it has not, and you can selectively switch off only the
notes originated by the MIDI tools or all notes. You may also choose to
switch off notes on any combination of MIDI channels.

Version requirements

If you use the Sound Tools, Note Synthesizer, and Note Sequencer with the
MIDI tools, you will need certain minimum version numbers. The required
minimum versions are

Sound Tools v2.3
Note Synthesizer vl.2
Note Sequencer v1.2

Apple engineers adapted the above tools for use with the MIDI Tool Set, and
previous versions cause MIDI data losses. The previous versions disabled
interrupts for more than 300 microseconds at a time, which will cause
problems because standard MIDI equipment transfers data at a rate of one
byte every 320 microseconds. :

You will only need the Note Synthesizer if you want to use the MIDI time-
stamp clock. The clock is actually a DOC generator, and the Note Synthesizer
is used to allocate it. If the MIDI clock is not in use, you may start up or
shut down the Note Synthesizer at will, If, however, you are using the MIDI
clock, then the Note Synthesizer must be loaded and started up. You do not
need the Sound Tools or the Note Sequencer to use the MIDI tools, and you
can load them or not as you choose.

Using the MIDI Tool Set

When you have successfully loaded and started the MIDI Tool Set, you will
need to load a MIDI device driver. You must choose a driver and supply the
MIDIDevice call with the slot number that the MIDI interface is using and
the pathname of the driver . Once the device driver is loaded, you will need
to allocate input and output buffers for MIDI data. Your application will need
these buffers if it ever makes calls to MidiReadPacket or MidiWritePacket.

&2 Apple llss Toolbox Reference Update

Input and cutput of MIDI data are directed as independent processes so that
the Apple 1IGS can perform other functions independently, When you have
configured your system as described above, your application can perform
whatever editing or other tasks you desire, and you can start or stop MIDI
input or output any time you like, For example, your application could allow
a user to start output, whereupon the tool set starts transmitting the contents
of the output buffer. If the application periodically makes calls to
MidiWritePacket to send the appropriate data to the output buffer, the
sequence can play in the background while the user is using editing
functions at the same time. Input and output processes can bé active at the
same time, so that a user could be both playing and recording simultaneously;
this is useful for making multi-track sequences.

You can start and stop the clock provided with the MIDI tool set with calls
to MidiClock. This allows you to accurately stamp MIDI packets for timing
purposes. The clock increments every 76 milliseconds, and when a MIDI
packet is received, the tool set stamps it with the current value of the clock.
In this way, your application can keep accurate account of when a particular
note, chord, or program change is to occur.

MIDI Tool calls

All the MIDI Tool Set calls are new calls, added to the Tooclbox since
publication of the Apple I[IGS Toolbox Reference.

The routines you will use to work with the MIDI tool set are MidiControl,
MidiDevice, Midilnfo, MidiReadPacket, and MidiWritePacket. Three of these
calls are multifunction calls, which perform different actions depending on a
control parameter passed to them. The workhorse of the group is
MidiControl,which performs 18 different functions depending on the control
ﬁmcuﬂ;; parameter. The other multipurpose calls are MidiDevice and
Midilnfo.

The MIDI multipurpose tool calls are briefly described as follows. See the
call descriptions for more complete information.

MIDI Tool Set 63

MidiControl Performs 18 different MIDI control functions as selected by
JSfuncNum, the first parameter to the call. The functions are
selected by a numeric parameter passed to the MidiControl call.

fimcmam Function

0 Set realdtime vector

1 Set real-time error vector

2 Allocate input buffer

3 Allocate output buffer

4 Start MIDI input

5 Start MIDI output

6 Stop MIDI input

7 Stop MIDI output

8 Flush input buffer

9 Flush output buffer

10 Flush input packet

11 Wait for output buffer to clear
12 Set input mode

13 Set output mode

14 Clear note pad

15 Set MIDI delay

16 Enable/disable running status output

17 Enable/disable receipt of system exclusive packets

&4 Apple lics Toolbox Reference Update

Selects, loads, and unloads MIDI device drivers.

Function

Not implemented in version 1.1
Load a device driver

Unload a device driver

MIDI Tool Set

65

Returns specified information about the state of the MIDI Tool
Set.

Function

Number of bytes in next input packet
Number of bytes waiting in input buffer
Number of bytes waiting in output buffer
Maximum number of bytes in input buffer
Maximum number of bytes in output buffer
Not implemented in version 1.1

Not implemented in version 1.1

Time stamp clock value

Time stamp clock frequency

&8 Apple lics Toolbox Reference Update

MIDIBootInit $0120

Initializes the MIDI Tool Set; called only by the Tool Locator. An application
must never make this call,

Parameters
This call has no input or output parameters. The stack is unaffected.

c

extern pascal void MidiBootInit () inline(0x0120,dispatcher);

MIDI Tool Set 67

MIDiStartUp

$0220

Starts up the MIDI Tools for use by an application. Applications should make
this call before any other calls to the MIDI Tools. Normally an application
must next call MidiDevice to load a MIDI device driver, and then
MIDIControl to allocate an input buffer and an output buffer.

Parameters
Stack betfore call
|— previous contents _|

Word—User ID for the Memory Manager
Word—DBeginning of three-page MIDI direct-page
<-SP

<=-SP

extern pascal void MidiStartUp() inline{0x0220,dispatcher);

48 Appla lies Toolbox Reference Update

MIDIShutDown $0320

Shuts down the MIDI Tool Set. An application that uses the MIDI Toaols
should make this call before it quits. MIDIShutDown deallocates the input
and output buffers, stops the MIDI clock and deallocates its generator, and
shuts down the hardware interface. The call's actions take place immediately,
so the application should take any necessary steps to see that all recent MIDI
output has been sent before shutting down the tools (see MIDIControl).

Parameters
This call has no input or output parameters. The stack is unaffected.

Cc

axtern pascal void MidiShutDewn() inline{0x0320,dlspatcher);

MIDI Tool Set

69

MIDIVersion

90420

Returns the version number of the currently loaded MIDI Tools according to
standard Toolbox version number protocol.

Parameters

Stack before call
| — previous contents _|

= space =

- -1

Stack after call
| previous contents _|

|— versionvum _|

I_ "'l

Errors

Word—Space for result
<-SP

Word—Version of currendy installed MIDI tools
<-5P

$2007 no output buffer allocated

¥

C

extern pascal Word MidiVersion() inline(0x0420,dispatcher);

70 Apple lles Toolbox Reference Update

MIDIReset $0520

Resets the MIDI Tools; called by system reset. An application must not make
this call.

Parameters
This call has no input or output parameters. The stack is unaffected.

Cc
extern pascal vold MidiReset () inline (0x0520,dispatcher);

MIDI Tool Sat 71

MIDIStatus

$0620

Returns a Boolean value of TRUE if the MIDI Tools are active, and FAISE if

they are not.

Parameters
Stack before call

|. previous contents _|

Stack after call
|— previous contents __|
|— activerlag _|

C

Word—Space for result
<-5P

Word—Booclean: TRUE if the ool set is active

<=-5P

axtern pascal Word MidiStatus() inline (0x0620,dispatcher);

72 Apple liss Toolbox Reference Update

MIDIClock $0B20

Controls operation of the optional time-stamp clock. The clock ticks once every 76
microseconds, and allows events to be scheduled for precise timing. The funcNum
parameter specifies which cdock function to perform, and the arg parameter provides the
argument to the selected function.

Parameters

Stack before call

| — previous contents _|

|-~ funcNum —| Word—MIDIClock function number
|- I

B arg —| Long—Argument to MIDIClock function
|- _] <-sp

Stack after call

|— previous contenss _|

~| <-sp

Errors

See the MidiClock function descriptions below,

Cc

extarn pascal void MidiClock() inline(0x0B20,dispatcher):;

MIDI Tool Set 73

MIDIClock functions

MIDIClock controls the operation of the MIDI clock provided by the tool set. Four
different functions are provided for clock control. They are as follows:

0 miSetClock

2 miStopClock

3 miSetFreq

The value of arg becomes the new value of the time
stamp clock. The most significant bit of the arg
parameter must be zero. There is a limit to the
accuracy with which the clock can be set. The least
significant byte of the time stamp clock will always
be zero if the clock is stopped. If the clock is
running, the value of the least significant byte will
be undefined for the purposes of this call. The result
is that an application can set the clock only to

within 20 milliseconds of a particular value.

Allocates a DOC generator, writes consecutive
values from $00 through $FF into the first page of
the DOC RAM, and starts the clock. By default, the
clock starts counting at zero. If the application stops
the clock and restarts it, it starts with the same
value it had when it stopped, unless the value is
changed with an miSetClock call. miStartClock
should be called before miStartinput. The process of
starting the clock is time-consuming and disables
interrupts, so it could cause MIDI data to be lost if
it is done while the application is receiving a MIDI
transmission. The Sound Tools and the Note
Synthesizer must be loaded and started up before
this call is issued.

Errors:
$0810 no DOC or DOC RAM found
$1921 no DOC generator available
$1923 Note Synthesizer not started

The MIDI time stamp clock is stopped. The DOC
generator and its associated RAM are released for
use by the Note Synthesizer. MIDI data that is
received while the clock is stopped is stamped with
the value of the stopped clock. Any output packets
with time stamps greater than the value of the
stopped clock are not sent until the clock is
restarted or reset.

The frequency of the Apple IIGS MIDI clock cannot
be changed, but this may not be true in future
versions.

74 Appie liss Toclbox Reference Update

MIDI Tool Set 75

MIDIControl $0920

Performs 18 different control functions required by the MIDI Tool Set.

The funcNum parameter selects which function is to be performed, and the arg parameter
passes any argument required by that function,

Parameters

Stack before caill

|— previous contents _|

= Space —| Word—Space for result

|- funcNum | Word—Function to perform
= =

- arg —| Long—Argument to MIDIControl function
|- —| <-sp

Stack after call

| previous contents _|

= —| <-sp

C

extern pascal void MidiControl() inline (0x0520,dispatcher):;

74 Apple lics Teolbox Reference Update

MidiControl functions

A MidiControl call has 18 legal values for the funcNum parameter. Each value
invokes a different control function. The functions are as follows:

0 miSetRTVec

3 miSetOutBuf

The long parameter contains the address of a service
routine in the application. When the application
receives MIDI real-time commands, it calls this
service routine. A value of zero in this parameter
disables the service routine. The service routine
must not disable interrupts, and if it runs for longer
than 300 microseconds, it must call the MIDI polling
vector at least every 300 microseconds. The only
MIDI calls that the service routine should make are
MidiReadPacket and MidiWritePacket.

The long parameter contains the address of a service
routine in the application. The MIDI tool set calls
this routine in the event of a real-time error. A
value of zero in the parameter disables the service
routine. This service routine must not enable
interrupts, If it executes for longer than 300
microseconds, it must call the MIDI polling vector at
least every 300 microseconds.It can call
MidiWritePacket and MidiReadPacket, but no other
MIDI tool calls.

The long parameter contains a pointer to a 6-byte
record. The fields of this record are as follows:

WORD Size of input buffer
LONG Address of input buffer

If the address is zero, the MIDI Tool Set will
allocate the input buffer. If the specified size is
zero, the MIDI tools will allocate a buffer 8 KB in
size. If the application allocates the buffer it must be
non-purgeable, in a fixed location, and must not
cross bank boundaries,

The long parameter contains a pointer to a six-byte
record. The fields of this record are as follows:

WORD Size of output buffer
LONG Address of output buffer

MIDI Tool Set 77

4

5

78

If the address is zero, the MIDI Tool Set will
allocate the output buffer, If the specified size is
zero, the MIDI Tool Set will allocate a buffer 8KB
in size. If the application allocates the buffer, it
must be non-purgeable, in a fixed location, and must
not cross bank boundaries.

Starts an interrupt-driven process that reads MIDI
data into the MIDI Tools' input buffer, An application
can- retrieve these data with a MidiReadPacket call.
The long parameter contains the address of a service
routine called when the first packet is available in a
previously empty input buffer. A value of zero
disables this service routine. The service routine
must not disable interrupts, and if it runs for longer
than 300 microseconds, it must call the MIDI polling
vector at least every 300 microseconds. The only
MIDI calls that the service routine should make are
MidiReadPacket and MidiWritePacket.

Starts an interrupt-driven process that writes MIDI
data to the MIDI Tools' output buffer. The routine
places the data into the output buffer using calls to
MidiWritePacket. The long parameter contains the
address of a service routine called when the output
buffer is completely empty. A value of zero disables
this service routine. The service routine must not
disable interrupts, and if it runs for longer than 300
microseconds, it must call the MIDI polling vector at
least every 300 microseconds. The only MIDI calls
that the service routine should make are
MidiReadPacket and MidiWritePacketr

Causes the MIDI Tool Set to ignore MIDI data until
the next miStartinput call.

Halts MIDI output until the next miStartOutput call.
Discards the contents of the current input buffer,

Discards the contents of the current output buffer.
The long parameter selects the method:

Long parameter Actiomn:

Apple flcs Toclbox Reference Update

10 miFlushPacket

11 miWaitOutput

13 miSetOutMode

$0000 00XX

$0001 00XX

SFFFF XXXX

Wait for the current packet to
finish transmission, then turn off
all notes that have not been turned
off in channel XX If XX = 510,
turn off notes in all channels.

Wait for current packet to finish
transmission, then turn off all
possible notes (pitch $00 through
$7F) in channel XX If XX = 510,
turn off notes in all channels.

Discard the contents of the output
buffer immediately without turning
off any notes.

Discards the next input packet.

Ceases execution until the output buffer becomes
empty. This function may never return if output is

disabled.

The long parameter selects the input mode. The legal
values are as follows:

Long parameter Input modes

0

Raw mode. MIDI data is transferred
unchanged.

Packet mode. MIDI data is
converted to packets, with length
of packet and time stamp bytes
added to the front of each packet.

Standard mode, MIDI data is
returned in Standard MIDI Flle
Format

The long parameter selects the output mode. The
legal values are as follows:

Long parameter Input mode

MIDI Tool Set 79

14 miClrNotePad

are on and which

Raw mode, This mode is very
similar to packet mode, but no
attempt is made to keep track of
which notes are on. Running status
optimization is still performed
unless explicitly disabled by
miCutputStat. Because no record is
kept of which notes are on, all
notes that are turned on, must be
explicitly turned off.

Packet mode. MIDI data is
converted to packets. The MIDI
Tools track note-on and note-off
commands.

Standard mode. MIDI data is
returned in Standard MIDI Flle
Formalt.

Erases the MIDI Tool Set's record of which notes

are off. This call causes the tool

set's record to show that all notes are off.

Sets a delay value for use with MIDI synthesizers

that cannot process MIDI data at the full MIDI
transfer rate, The low word of the long parameter
specifies 2 minimum delay between packet sends in

Enables or disables standard MIDI running status

ing status is enabled, MIDI status

bytes are sent only when they change, or are
otherwise absolutely necessary. This optimization
speeds transmission and reduces CPU overhead, but
can cause malfunctions if the synthesizer and
computer disagree on the current value of the status
byte. The long parameter value is $0000 to disable

to ignore MIDI System Exclusive

data, System exclusive packets begin with the value
$F0. If the application ignores system exclusive

not be buffered, and the

application will not receive them. The parameter

ignore system exclusive data,

15 miSetDelay
units of 76 microseconds.
16 miOutputStat
mode. When runn
running status, S0001 to enable it.
17 milgnoreSysEx Specifies whether
packets, they will
must be $0000 to
$0001 to accept it
80 Apple liss Toolbox Reference Update

MIDIDevice S0A20

Allows an application to select, load, and unload device drivers for use with
the tools. The call interprets the driverInfo parameter as the address of the
driver to be loaded. The funcNum parameter specifies whether the driver is
to be

1: loaded
or
2: unloaded

Parameters

Stack before call

|- previous comtents _|
|- fumenum _| Word—Function to perform

- I

|— drurPtr —| Long—Ppointer to device driver information

= | <-sp

Stack after call

| previous comtents _|
i _| <-sp

Ermrors
See the function descriptions below.

C

axtern pascal void MidiDevice() inline(0x0A20,dispatcher);

MIDI Teol Set

81

MIDIDevice functions

MIDIDevice loads and unloads MIDI device drivers, which allow the MIDI Tools to
drive a particular MIDI interface. The present version of the MIDI Tool Set supports the
Apple MIDI Interface and ACIA 6850 MIDI Interface cards, such as the Passport MIDI
interface. The function of the call is selected by the value of the funcNum parameter. The
legal values are as follows:

0 Notimplemented in version 1.1

1 milocadDrer The dryurPir parameter points to a device driver
record, which specifies a device driver to be loaded.
The call loads the specified device driver into
memory, after shutting down and unloading any
previously loaded device drivers. It then initializes
the newly loaded driver.

Errors:

$2008 miDriverError
52080 miDevNotAvail
$2081 miDevSlotBusy
$2082 miDevBusy
$2084 miDevNoConnect
$2086 DevVersion
$2087 miDevintHndlr

2 miUnloadDrvr Shuts down and unloads the currently loaded device
driver. Terminates MIDI transmission or reception if
they are currently active. Releases memory occupied
by the device driver.

az Apple lics Toolbox Reference Update

MIDlInfo $0C20
Returns certain information about the state of the MIDI Tools. The funcNum parameter
can specify nine different functions, whose results are returned in result.

SuncNums:

number of bytes in next input packet

number of bytes of data in input buffer

number of bytes of data in output buffer
maximum number of bytes of data in input buffer

maximum number of bytes of data in output buffer

WO W N P

address of packet being recorded by MidiRecordSeq (not yet
implemented)

G address of packet being played by midiPlaySeq (not yet implemented)
7. time stamp clock value

8 time stamp clock frequency

Parameters

Stack before call
| previous contents _]

|- space —| Long—Space for result

|— funchum | Word—Desired information
- | <-se

Stack after call

| — previous contents _ |

- -

|- infoResur _| Long—The requested information
| | <-sp

Errors
$2007 No input buffer allocated

MIDI Tool Set 83

C
axtern pascal LongWord MidiInfo() inline (0x0C20,dispatcher);

84 Apple |les Toolbox Reference Update

MIDIReadPacket $0D20

Returns the length of a packet of MIDI data that it has transferred from the input buffer
to the indicated array. If no packet is available, the call returns a zero. The first two
bytes of the packet contain a value specifying the length in bytes of the packet. The
next four bytes contain the MIDI clock time stamp. All bytes after the time stamp are
actual MIDI data.

Parameters

Stack before call

| previous contents _|

R space —| word—Space for result

| <]

— bufpir —| Long—Painter ta buffer to hold returned packet
= bufSize _| Word—sSize in bytes of the packet buffer
- —| <-sp

Stack after call

|- previous contents _|

Ji: Result —| Word—Number of bytes returned

e _| <-sp

Cc

extern pascal Word MidiReadPacket () inline (0x0D20,dispatcher):

MIDI Teol Set 85

MIDIWritePacket $0E20

Queues the specified MIDI packet into the output buffer, If the packet is successfully
wrilten to the output buffer, the number of bytes written is returned. Otherwise,
MIDIWritePacket returns zero. The packet format is the same as that used by
MIDIReadPacket. The first two bytes contain the number of bytes in the packet The next
four contain the packet's time stamp. The remaining bytes contain the MIDI data.

Parameters
Stack before call

|- previous comtents _|

i space —| Word—Space for result

S =

b bufPir —| Long—Pointer to buffer containing MIDI packet
|- —] <-sp

Stack ofter call

|- previous contenss _|

|- byteswritten _| Word—Number of bytes written to the output buffer
|- | <-sp

=

extern pascal Word MidiWritePacket () inline(0=0E20,dispatcher);

86 Apple lics Toolbox Reference Update

——— —
——

Chapter 12
= =

Miscellaneous Tool Set

This chapter documents new features of the Miscellaneous Tool Set. The
complete reference to the Miscellaneous Tools is in Volume 1, Chapter
14 of the Apple IIGS Toolbox Reference.

New information

e ClearHeartBeat and DeleteHeartBeat will turn off the interrupts that
occur every 60th of a second if the following conditions are
satisfied: *

1) There are no remaining heartbeat tasks

2) The interrupt handier installed in IRQ.VBL is the standard system
interrupt handler, i.e. no other interrupt handlers have been
installed

3) The built standard mouse is not running in VBL interrupt mode.

Miscellaneous Tool Set 89

= =
—————

Chapter 13
=——

Note Sequencer

This chapter documents the Note Sequencer. This is new documentation ,
not previously presented in the Apple IIGS Toolbox Reference.

About the Note Sequencer

The Note Sequencer is a collection of routines that implement a
sequencer in the Apple IIGS. This sequencer is designed to play
melodies using data stored in a specific format. It does not provide the
means to create these data structures, and so an application must provide
its own tools for building new sequences.

The Note Sequencer works with the Note Synthesizer and the Sound
Tool Set, and it can work with the MIDI Tools if you choose. It can also
send control output directly to a MIDI interface device. Use of the Note
Sequencer version 1.3 requires the Note Synthesizer version 1.3 or
later, and the Sound Tools version 2.4 or later.

¢ Note: The Note Synthesizer and the Note Sequencer refer to
the software tools provided with the Apple IIGS, not to any
separate instrument or device. The MIDI Tools are software
tools for use in controlling external instruments, which may be
connected through a MIDI interface device.

The Note Sequencer runs during interrupts, and so can run in the
background while other application tasks take place in the foreground.
Because of this, interrupts must be enabled while a sequence is being
played. Any activity that disables interrupts interferes with execution of
a sequence. Disk access, for example, disables interrupts, so an
application cannot simultaneously gain access to a disk and play a
sequence using the Note Sequencer.

The Note Sequencer provides means a for synchronization, but an
application that needs a very fine degree of control over the Note
Sequencer’s timing can directly control it by using the StepSeq call.

The Note Sequencer's command interpreter

The Note Sequencer is actually a command interpreter. The commands it
interprets are 32-bit data structures called segltems, or Sequence items.
These 32-bit items contain information that the Note Sequencer needs o
classify them as note commands, control commands, MIDI commands, or
register commands, and to execute them properly.

The format of a seqltem is detailed in figure 13-1.

Mote Sequencer 93

Figure 13-1 segitem format

B mumben
1 118 14 g 7 ¢ 0
tail n vall chordl cmed
and For all commands except Note commands, this is the command
identifier, a 7-bit number which uniquely identifies the
command.
ch The chord bit is a Boolean value. If set, it allows the Note

Sequencer to play more than one note simultanecusly.

vall Vall is a data field whose meaning depends on the command
being issued.

n The note bit identifies Note commanads. If bit n is set, the
segltem is a note command.

tail The format of the tail field depends upon the command type. It
contains two or more fields with command-specific
information in them.

Patterns and phrases

A pattern is any sequence of seqltems. The Note Sequencer plays
melodies by carrying out the seqltem commands in specified patterns. A
phrase is an ordered set of pointers to patterns or to other phrases.
Since a phrase can contain pointers to other phrases, it is possible to
nest phrases. The Note Sequencer supports up to 12 levels of such
nesting.

When a program calls the Note Sequencer to play a sequence, it passes a
parameter containing a handle to the first byte of the top-level phrase.
This phrase consists of an ordered series of pointers to the patterns or
phrases to be played, followed by phraseDoneFlag , a longword value (=
$FFFFFFFF) that marks the end of a pattern or phrase. The last seqltem
in any phrase or pattern is always pbraseDoneFlag.

Each pattern consists of an ordered series of segltems. They can be any
valid seqltem, and describe the characteristics of each note to be played
in the sequence. Control and Register Commands also allow the
characteristics of the notes 1o be modified, and allow the programmer to
build complex sequences by using conditional looping and branching. In
this sense, the Note Sequencer is a simple programming language.

Both patterns and phrases are arrays of longwords that end with the flag
value $FFFFFFFF. They are distinguished by a 4-byte header,

A phrase is identified by the header

de i2'0001°* ; low word
de 12'0000°! ; high word

MNote Sequencer 24

The phrase body consists of a series of pointers. They can each point
either to other phrases or to patterns, which are sequences of
executable segltems. For example:

de i4'phrasel’
dc i4'patternl’
dc i4'phrase2’

A phrase always ends with pbraseDoneFlag:
dc i14'SFFFFEEFE’
A pattern is identified by the header:

dc i2'0000" : low word
de 412'0000° ; high word

The body of a pattern consists of segltems, such as:

de 14'S880ABCT4! ; play C4, duration=10, volume=115
de 14'5880RABET4" ; play D4, duration=10, wvolume=115
de i4'S880ARBROT4" ; play E4, duration=10, volume=115

Again, the patten must end with phraseDoneFlag:
dc i4'SFFFFFFFF’

Sequence ltems
There are four types of Seqltems: Note Commands, Control Commands,

MIDI Commands, and Register commands, Each type is organized in the

same way, but the values in each part of the data structure have
different meanings in the different commands.

MNete Sequencer

95

Note commands

Note commands switch notes on and off. You can use note commands in
two ways. You can issue a pair of NoteOn and NoteOff commands,
turning a specified note on at a certain point, and then explicitly
turning it off, or you can issue a NoteOn command with a duration
specified. In this case the Note Sequencer plays the note for a number
of ticks equal to the value of the duration parameter, then tums the
note off without the need for an explicit NoteOff command. Each tick
occurs at an interval set by the Note Synthesizer's update rate (see
Note Synthesizer).

Figure 13-2 Note command format

it it
30 27 26 16 15 14] 7 [
d trk duration n vall chord] cmd
Bits 0-6 Note volume. Corresponds to MIDI velocity. A value of
zero indicates a NoteOff command.
Bit 7 Chord bit. Indicates that the seqltem is to be played

simultaneously with the next seqltem. Do not set both the

chord bit and the delay bit in the same item.

Bits 8-14 Pitch, Selects the pitch to be played. Values maﬁr range
from O to 127. A value of 60 selects middle C (261.6 Hz).
Adjacent values are one semitone apart.

Bit 15 Note bit. Is always set for Note commands. If this bit is
not set in a seqitem, then the seqgltem is not a note
command.

Bits 16-26 Duration. Specifies the length of time the Note Sequencer

is to play the note. Values may range from 0 to 2047, and
specify the number of ticks the note is 1o be played.

A duration of zero identifies the seqltem as a NoteOn
command. A NoteOn seqltem is played continuously until
the Note Sequencer finds a matching NoteOff.

Bits 27-30 Track Number. assigns notes to synthesizer voices and to
handlers by specifying their track numbers. Values from
$00 to SOF are legal.

Bit 31 Delay Bit. If this bit is set, the Note Sequencer must

finish playing this Seqltem before beginning to play the
next one. The Note Sequencer cannot advance to the next

seqltem until the duration specified by bits 16-26 is past.

MNote Saquencer

s

Control Commands

Control commands are used to specify the characteristics of the Note
Sequencer as it is playing the notes. They can control pitch bend, tempo,
vibrato, and the sequence of patterns that is played.

Figure 13-3 Control command format

bt number:
3330 27 26 24 23 16 15 14 87 & 2
d trk res | val2 n vall chord cmd

Bits 0-6 Command number.

Bit 7 Chord bit. The chord bit should be set in a control
command. A cleared chord bit can sometimes cause
unwanted delays in playing a sequence.

Bits 8-14 Vall. This field contains data specific to each command.

Bit 15 Note bit. Always clear this bit for Control commands. A set
Note bit causes the seqltem to be processed as a Note
command instead of a2 Control command.

Bit 16-23 Val2, This field contains data specific to each command.

Bits 24-26 Reserved for control field. These bits should always be
clear unless otherwise specified.

Bits 27-30 Track number. Notes are assigned to synthesizer voices
and to handlers by specifying their track numbers. Legal
values are $00 to SOF.

Bit 31 Delay bit. The delay bit should always be cleared in

Control commands, since they have no duration.

MNote Segquencer 97

Pitch Bend command
0
1

Pitch wheel position. Values > 64 specify sharp pitch
bend; values < 64 specify flat. Intervals are in semitones.

0

No significance in the Pitch Bend command. Val2 should
always be set to zero for Pitch Bend.

Selects pitch bend assignment

0 selects both internal and MIDI pitch bend
1 selects internal pitch bend

2 selects MIDI pitch bend

trk Track number

0

| b1 e

B

The Pitch Bend command creates a bend effect in a played note. A
control command expresses pitch bend as a value from 0 to 127, A value
of 64 indicates no pitch bend, and the note is played at the pitch
specified in its Note command. The note is played at a pitch determined
by its nominal pitch plus the pitch bend sharp or flat. The sequence must
use a series of pitch bend commands to achieve the smooth portamento
usually associated with a pitch bend.

Tempo command

and 1
chord 1
vall New Increment. The value may vary from 0 to 127.
note 0
val2 0
Reserved 0
trk 0
d 0

This command sets the Note Synthesizer's increment value. The
increment value determines the number of ticks between updates in the
execution cycle, so larger increments translate to slower tempos.

Note Sequencer

98

All Notes Off command

o o o o o o 2 0 O =

This command turns off all notes currently being played, overriding any
previous Note commands.

Jump command

3

1

Vall is the high seven bits of the destination.

Val2 is the low eight bits of the Jump destination.
0
trk not used.

0

The Jump command is the Note Sequencer's equivalent of a jump or goto
command in a conventional programming language. Execution of seqltems
will continue with the item specified by vall and val2. The number
given is a simple index Into the series of segltems.

and

chord

vall

note 0
val2

Reserved

="

Nete Sequencer el

Vibrato Depth command

and 4

chord 1

wvall The new value for vibrato depth; the value may vary from
0 to 127

note 0

valz Control number if a MIDI command is generated

Reserved 0: internal and MIDI vibrato
1: MIDI vibrato

trk Track number

d 0

The Vibrato Depth command assigns a depth value to the vibrato effect
used with the specified track. The vibrato effect is a modulation in the
pitch of the voice assigned to the specified track. The Depth value can
range from 0 to 127, with larger values resulting in greater vibrato.

Program Change command

and

chord

vall Instrument number of the new instrument.

note D

val2 New MIDI program number, if the sequence is using MIDL
Reserved Specifies MIDI usage; legal values are

0 The Apple LGS internal synthesizer and an
external MIDI device.

1 The Apple IIGS internal synthesizer only
2 External MIDI device only.

trk Track number; specifies which instrument program to
change by specifying the track to which that instrument is
assigned.

d 0

The Program Change command allows a sequence to change the
instrument assigned to a track during play. The new instrument must be
in the current instrument table for the new assignment to be possible.

Note Seguencer 100

Register Commands

Register commands provide the Note Sequencer with program control
capabilities. The Note Sequencer maintains 8 psuedo-registers that can
be used to implement looping and conditional branching structures. With
register commands, and application can achieve the effect of control
structures such as “if...then", *do...while” or “repeat...until” in
sequences.

Bytes 2 through 9 of the Note Sequencer's direct-page contain the
psuedo-registers; these psuedo-registers are number 0 through 7. Each
register occupies eight bits of memory, but not all the commands use the
full register. The IfGo and Set register commands treat each register as
if it were only four bits in size, using only the least significant 4 bits

of the byte.

Although the Increment and Decrement register commands act on the full
eight bits of each psuedo-register, only the least significant four bits of
each psuedo-register should be used. The most significant four bits
should always be cleared.

Set Register command

omd 6
chord 1
vall low 3 bits contain the register number
high 4 bits contain the value
note 0
val2 0
Reserved 0
Bit 24 0
Bit 25 0
Bit26 0
trk 0
d 0

Sets the specified psuedo-register to the specified value.

Note Sequencer 101

IfGo Register command

and 7

chord 1

vall low 3 bits contain the register number
high 4 bits contain the value

note 0

valz offset: -128 to +127 seqltems

Reserved 0

Bit 24 0

Bit 25 0

Bit26 0

trk 0

d 0

Tests the specified psuedo-register for the specified value. If the
psuedo-register contains the supplied value, then execution continues
with the seqitem at the offset specified in val2, calculated from the
current seqltem. If the values do not match, execution continues with
the next seqltem in sequence. The IfGo command does not check the
bounds of the offset provided, so the value must be a valid one, or the
effects will be unpredictable.

Inc Register command

and 8
chord 1
vall low 3 bits contain the register number
note 0
val2 0
Reserved 0
Bit 24 0
Bit 25 0
Bit26 0
trk 0
d 0

Increments the value of the specified psuedo-register.

Note Sequencer 102

Dec Register command

cmd 9
chord 1
vall low 3 bits contain the register number
note 0
val2 0
Reserved 0
Bit 24 0
Bit 25 0
Bit26 0
trk 0
d 0

Decrements the value of the specified psuedo-register. If the value is
zero when the command is executed, the psuedo-register's value will
wrap to $FFFF.

MIDI Commands

MIDI commands allow an executing sequence to send data directly to
MIDI devices that are connected to the Apple IIGS. All the standard MIDI
commands are provided, except MIDI System Exclusive and MIDI System
Common. These commands have been replaced by other commands that
allow an executing sequence to send one or two bytes of raw data to

the MIDI device.

These commands are based on the MIDI specification, version 1.0, which
is not described in this documentation. For further information on the
specification, see standard MIDI documentation,

MidiNoteOff command

and 10

chord 1

vall bits 8 through 11 are the channel number
note 0

low note number

high velocity

Sends a MIDI NoteOIf command on the channel number specified in vail.
The note turned off is the note specified as a note number in the low
byte of the high word, and a velocity in the high byte of the high word.

MNote Segquencer 103

MidiNoteOn command

11

1

bits 8 through 11 are the channel number
0

note number

Friige

velocity

Sends a MIDI NoteOn command on the channel number specified in vail.
The note turned on is the note specified as a4 nole number in the low
byte of the high word, and a velocity in the high byte of the high word.

MidiPolyphonicKeyPressure command

and 12

chord 1

vall bits 8 through 11 are the channel number
note 0

low note number

high key pressure

Sends a MIDI polyphonic key pressure command on the channel number
specified in vall. The note affected is the note specified as a note
number in the low byte of the high word, and its new key pressure is

omd 13

chord 1

vall bits 8 through 11 are the channel number
note 0

low control number

high control value

Sends a MIDI control change command to the channel specified in vall.
The control number is specified in the low byte of the high word and
the control's new value is in the hiogh byte of the high word.

Note Sequencer 104

MidiProgramChange command

and 14

chord 1

vall 0

note 0

low program number

high 0
Sends a MIDI program change command to the channel specified in vall.

and 15

chord 1

vall bits 8 through 11 are the channel number
note 0

low channel pressure

high 0

Sends a MIDI channel pressure command to the channel specified in vall.
The new pressure value is specified by the low byte of the high word.

MidiPitchBend command

16

1

bits 8 through 11 are the channel number
0

pitch bend least significant byte

pitch bend most significant byte

Sends a MIDI pitch bend command to the channel specified by vall. The
new pitch bend value is specified by the high word of the command,
with the least significant byte of the value in the low byte of the high
word, and the most significant byte in the high byte.

SRR

Note Sequencer 105

MidiSelectChannelMode command

and 17

chord 1

vall bits 8 through 11 are the channel number
note 0

low first data byte

high

second data byte

Sends a MIDI select channel mode command to the channel specified in
vall. The new MIDI channel mode is specified by two data bytes, the
first of which is passed in the low byte of the high word, and the
second in the high byte of the high word.

MidiSystemExclusive command

and 18

chord 1

wall 0

note 0

low least significant byte of low word of MIDI packet address
high most significant byte of low word of MIDI packet address

Passes a pointer to a MIDI packet so that the Note Sequencer can send a
MIDI system exclusive command. If MIDI was enabled in the StartSeq
call, and if a valid MIDISetSysExIHighWord preceded this command,
then the specified MIDI packet will be sent with a MIDI system
exclusive command, The MIDISetSysExIHighWord command sends the
high word of the MIDI packet's address, and this command sends the low
word. The low word of the packet address is passed in the high word of
the command.

The MIDI packet format is as follows:

length word
timestamp 4 bytes
sys. excl $F001
data 2 bytes

Note Sequencer 10&

MidiSystemCommon command

and 19
chord 1
vall bits 8 through 10: low nibble of status byte

value varies from 1 through 7
bits 11 and 12: number of data bytes
bit 11 set: 1 data byte
bit 12 set: 2 data bytes (bit 11 deared)

note 0
low first data byte
high second data byte

Sends one or two bytes of MIDI data, The first data byte is passed in the
low byte of the high word and the second data byte, if there is one, is
passed in the high byte of the high word.

MidiSystemRealTime command

and 20

chord 1

vall 0

note 0

low real-time number
high 0

and 21

chord 1

vall 0

note 0

low low byte of high word
high high byte of high word

Specifies the high word of a MIDI packer address to be sent with a
MIDI system exclusive command. The MIDI system exclusive command
and the low word of the packet address are sent by the
MIDISytemExclusive command. The high word of the packet address is
passed in the high word of the command.

MNote Sequencer 107

Using the Note Sequencer

In order to use the Note Sequencer, you must have loaded and started
up the following tool sets:

Tool Locator

Memory Manager

Sound Tools version 2.4 or later

Note Synthesizer version 1.3 or later

MIDI Tools verson 1.2 or later (if MIDI is to be used)

The Note Sequencer's execution takes place during interrupts. This
means that interrupts are disabled when segl/tems are being executed. It
also means that your error handlers and completion routines also run
with interrupts disabled.

The Note Sequencer cannot play a semitone value of 0. The reason for
this is that 0 is the value reserved for filler notes. Filler notes inserted
to fill sequences out without affecting what is being played. For
example, if an application is playing a complex sequence with several
voices, a voice may need to rest for some time while other voices play.
The application could use a delay to pause the voice, but during a delay
the Note Sequencer does not check other notes to see if they should be
turned off or otherwide serviced. This could be a problem if another
note changed during the delay. An alternative solution is to use filler
notes to fill out the needed time instead of using a delay command. The
fillers take up space in the sequence, but do not change anything; they
neither start nor stop any notes, and they do not prevent notes in other
tracks from being serviced.

The Jump command does not check for bounds errors, it simply causes
execution of a sequence to jump directly to the item specified. If the
value is erroneous, then execution could jump to any arbitrary place.
Needless to say, this would be undesirable.

You might try using allNotesOff and clearIncrement when you want to
stop 4 sequence and be able to start it again easily. A sequence stopped
in this way can easily be restarted with a call to set inccement.

Sequence timing

Normally we think of a musical sequence as several independent tracks
playing at the same time. For example, a musical passage might consist of
a violin sound playing a melody accompanied by a viola and a flute.
Musically, the three instruments will often play ar once, sounding
different notes. The Note Sequencer, however, always plays notes in
sequence, one after another, however many instruments it is using to
play them.

Note Sequencer 108

A chord, which is musically a group of different notes played at the
same time, is executed by the Note Sequencer as a series of discrete
notes plaved very quickly one after the other, For example, the Note
Sequencer would play a chord consisting of F above middle C, A above
middle C, and C one octave above middle C as a series of NoteOn
commands:

NoteOn F4 4 counts
NoteOn Ad 4 counts
NoteOn C5 4 counts

If the Note Sequencer waited for each note to finish before beginning
the next one, the resulting passage would be three distinct notes of
equal length, which is not what was intended. The Note Sequencer
therefore provides a way to play the three notes with very little delay
between them; so litde, in fact, that they sound as though they were
being played ail at once.

If the chord bit is set in a note command, it indicates that the next note
should be played to chord with the current one. If, on the other hand,
the delay bit is set, it indicates that the current note must be completed
before the next one is played.

Using MIDI with the Note Sequencer

The appropriate calls must be made to the MIDI Tool Set to use MIDI
with the Note Sequencer. Specifically, the MIDI Tools must be started
up, a device driver must be selected, and a MIDI output buffer must be
allocated.

You must specify whether MIDI is to be used when you start up the
Note Sequencer. If the high bit of the mode parameter is set when the
SeqStartUp call is made, then MIDI is enabled. In order for a particular
track to use MIDI, it must be enabled for that track, using the

SetTrkinfo call. Finally, the Note Sequencer checks tool call-specific and
segltem-specific flags for MIDI information, so that individual tool calls
or commands can enable or disable MIDI.

If all the appropriate flags, the mode flag, the track flag, and the
command or tool call flag are enabled, then MIDI commands are sent to
external MIDI devices. This arrangement is designed to provide
flexibility in execution. You could, for example, play only the drum
parts of a sequencc on external MIDI instruments by enabling MIDI
output only on the appropriate tracks, or you could play all parts on
external MIDI instruments. Switching between the two modes of play
would not require any modification of the sequence itself.

Note Sequencer 109

A sample sequence

The following example is a sequence presented in 65816 assembly
language:

Delay egu 580000000
Tl equ S08000000
T2 equ 3518000000
gtr equ 3540000
hlf equ 580000
Hote equ SB8000
o equ $3000
D4 aqu $3E00
F4 equ $4100
G4 equ $4300
Chord equ $80
phrhndl dc i4'phrl’
phrl de i4'01" ; it'as a phrase
de i4'phz2'
de i4'patcl’
de i4'phr2’
de id4'patl!’
de i4'pat2’
de i4'SFFFFFFFF’' ; end of phrase 1
phr2 de i4'01" ; it's a phrase
de i4'pat2®
de i4'patl’
de 14'SFFFFFEFF' ; and of phrase 2
patl de i4'00° : it'as a pattern
de L4'Delay+Tl+gtr+Note+C4+115°
de 4i4'Tl+gtr+Note+C4+Chord+11l5’
de i4'Delay+T2+gtr+Note+G4+115"'
de i4'Delay+Tl+hlf+Note+F4+115"'
de 14° ; end of patl
pat2 de 14700 ; it's a pattezn
de 414'Tl+Note+G4+Chord+115" : NoteOn
dc i4'Note+hlf' filler note
dc 14'nnlny+12+th+ﬂotq+n+115'
dec i4'Delay+T2+gtr+Note+D4+115"
de 14'Tl+Mote+G4+Chord+115" i NoteOQff
de 414'$00000002" : AllNotesCOff
de i4'SFFFFFEFFE’ i and of pat2

Note Sequencer calls

All the tool call documentation for the Note Sequencer is new in this
Update.

MNote Sequencer 110

SeqBootinit $011A
Initializes the Note Sequencer. This call must not be made by an application.

Parameters
This call has no input or cutput parameters. The stack is unaffected.

C
axtern pascal void SegBootInit() inline(0x01l1A,dispatcher):

Mote Sequencer m

SeqStartUp $021A

SeqStartUp starts up the Note Sequencer and performs all the necessary
initializations for the tool set. It also makes startup calls to the Sound Tools and the
Note Synthesizer, so an application should not start up those tool sets before
making this call.

Parameters

Stack before call

| . previous comtents _ |

|. dPagedddr _| Word—Location of Note Sequencer direct page
|- mode _| Word—MIDI flag

|- wupdateRate _| Word—Rate of interrupt generation

|- tncrement —| Word—Number of interrupts per tick-count
|- ~| <-sp

Stack after call

| - previous coments _ |

Fa ~| <-sp

Emors
$1A03 StartedErr; the Note Sequencer has already been started
$1A07 SeqNSWrngVer; the Note Synthesizer is the wrong version

o

extern pascal void SegStartUp() inline (0x021A,dispatcher);

Note Sequencer na

SeqgStartUp parameters:

The updateRate parameter specifies how often the Note Sequencer will
update its actions, using interrupts. For example, an updateRate value of
500 specifies that the Note Sequencer will receive interrupts at 200 Hz,
or every 5 milliseconds. A value of 250 means that interrupts will be
available at 100 Hz, or every 10 milliseconds. The same rate is used by
the MNote Synthesizer to update its instruments’ envelopes.

The increment parameter specifies how many interrupts constitute one
tick of the Note Sequencer counter. If updateRate is S00 and increment
is 20, then one tick will take 100 milliseconds. The Note Sequencer
gets interrupts every 5 milliseconds, and the counter is incremented
every 20 interrupts. If a quarter note equals 5 ticks, then it lasts half a
second, which corresponds to a tempo of 120 beats per minute. In
general, the number of beats per minute can be computed using the
following formula:

B = (24 * updateRate) / (increment *T)
Where B is beats per minute and T is the number of ticks in a beat.

Larger values for updateRate result in greater control of a sequence's
tempo and smoother envelopes. On the other hand, a higher updateRate
also requires more processor lime to service.

One general method for choosing an appropriate updateRate value is to
decide on the shortest note you will want to play. Suppose the shortest
note that you want to play is a sixteenth note, Assign sixteenth notes a
value of 1. Eighth notes are twice as long, so assign them a value of 2.
Quarter notes then receive a value of 4, half notes 8, and whole notes
16. Now decide how long you want a whole note, or a quarter note, or a
sixteenth note to be and compute the updateRate and increment so that
the duration comes out the way you want il

Once you have set the updateRate value, it remains in effect; you can't
change it without shutting down and restarting the Note Sequencer. On
the other hand, you can change the increment value, and the Note
Sequencer provides tempo calls that vary the tempo for you.

Mote Sequencer 118

SeqShutDown $031A

Shuts down the Note Sequencer ool set. It frees any buffers that the tools may
have allocated. An application that uses the Note Sequencer should call
SeqShutDown before quitting.

Parameters
This call has no input or output parameters. The stack is unaffected.

Errors
$1A05 noStartErr; the Note Sequencer has not been started

C

axtern pasacal void SegShutDown({) inline(0x031A,dispatcher);

Note Seguencer 114

SeqVersion $041A

Returns the version number of the Note Sequencer tools that is currently in use in
the standard Toolbox version number format.

Parameters

Stack belore call

| - previous contenss _ |

|5 space —| Word—Space for result

|- -] <-sp

Stack after call

| . previous contents _ |

|. wversionNum _| Word—Version number of the Note Sequencer
I= ~| <-sp

C
extern pascal Word SeqVersion() inline({0x04lA,dispatcher);

Nota Sequencer 115

SeqReset $051A
Resets the Note Sequencer. SeqReset is called when the Apple IIGS System is reser

All internal notes presently being played are turned off. An application should not
make this call.

Parameters
This call has no input or cutput parameters. The stack is unaffected.

Cc

extern pascal void SeqReset() inline(0x051A,dispatcher);

Note Ssguencer 1146

SeqStatus $061A

Returns a Boolean flag indicating whether or not the Note Sequencer is active. If
the tool set is active, the flag is nonzero, otherwise it is zero.

Parameters

Stack before call

| - previous contents _ |

L. space —| word—Space for result

- —| <-sp

Stack after call

| - previous contents _ |

|. activeFlag _| Word—Boolean; TRUE if the Note Sequencer is active
L _| <-sp

C

extern pascal Boolean SegStatus() inline(0x061A,dispatcher):

Nete Sequencer 117

Cleariner SO0ATA

ClearIncr sets the Note Sequencer's increment value to zero, halting the current
sequence, and returns the previous increment value, Setting the increment o zero
does not disable the Note Sequencer's interrupts, so envelopes are siill updated.
This means that, while the sequence will not progress, notes being played when the
increment was set to zero may hang. This call is only valid while a sequence is

playing.

Parameters

Stack before call

| - previous contents _ |

| - space —| Word—Space for result

18 —| <-se

Stack after call

| - previous contenss _ |

| - resuit _| Word—o0ld value of increment
| - | <-sp

c

axtern pascal Word ClearIncr() inline{(0Ox0AlA,dispatcher);

Note Sequencer 118

Getloc $0C1A

GetLoc returns certain information about the sequence that is playing. It provides an
index to the seqltem that is executing, the current pattern, and the nesting level
The nesting level indicates how deeply control has passed into a structure with
phrases nested within phrases. A nesting level value of 0 indicates that the Note
Sequencer is playing the top-level phrase. Getloc is valid only while a sequence is

playing.

Parameters

Stack before call

| - previous comtemts _ |

J< Space —| Word—Space for result

| - Space —| Word—Space for result

= Space _| word—Space for result

i< ~| <-sp

Stack after call

| - previous comtents _ |

| . curPbrase;rem _| Word—Current item in phrase
|- curPatttem _| Word—Current item in pantern
|- curlevel —| Word—Current nesting level of phrase
15 _| <-sp

c

axtern LocRec GetLoc():

Note Sequencer 1s

GeiTimer $O0B1A

GetTimer returns the value of the Note Sequencer’s tick counter. While the counter
is advancing, the value returned is necessarily somewhat inexact, since the value
changes as the call is executed. The call is valid only while a sequence is playing.

Parameters

Stack before call

| . previous contents _ |

|- space —| Word—Space for result

| X ~| <-sp

Stack after call

| - previous comtenss _ |

result —| Word—Current timer value
L _| <-sp

c

extern pascal Word GetTimer() inline (0x0B1lA,dispatcher):

MNote Sequencer 120

SeqAlINotesOff SOD1A

SeqAllNotesOff switches off all notes that are playing but does not stop the
sequence. Thus, any notes that are held are tumed off, but the sequence continues.
Use thiscall to use to temporarily silence all instrument voices while a sequence is
active. If the high bit of the mode parameter is set, then the Note Sequencer also
turns off all external MIDI notes of which it is aware.

Parameters
This call has no input or output parameters. The stack is unaffected.

c

extern pascal void SegAllNotesOff()
inline (0x0D1A,dispatchar) ;

MNote Seguencer 121

Setincr $091A

Setlncr sets the Note Sequencer's increment value. An application can use this
facility to control the tempo of a sequence. The call only functions while a sequence
is playing, but there is also a seqltem Control command, which allows the
programmer to set the increment value, so that a sequence can be written with a
specified tempo. If the increment value is set to zero, the sequence will halt.

Parameters

Stack before call

| - previous contents __ |

|. increment —| Word—The desired increment value
l= ~| =<-sep

Stack after call

| . previous contents _ |

= ~| <-sp

c

extern pascal void SetlIncr() inline(0x091A,dispatcher):

Note Sequencer 122

SetinsiTable $121A

Sets the current instrument table to the one specified in instTable.

Parameters

Stack before call
| - previous contemts _ |

|- instTable —| Long—Handle to instrument table
|- —-| <-sp

Stack ofter call
| . previous comtemts _ |
- —| <-sp

C

extern pascal void SetInstTable() inline(0x121A,diapatcher):

Instrument table
The instTable parameter is a pointer to an instrument table. The

instrument table is a data structure in Apple TIGS memory that contains
pointers to one or more instruments, The format of an instrument table

is as follows:

|. instNumber _| Word—Number of instruments
| - ~|
|- inst0 —| Long—Pointer to instrument 0
|- =
| - inst1 _| Long—Pointer 1o instrument 1
|- =
|- instN —| Lomg—Pointer to instrument N

The instNumber parameter equals N+1. See Note Synthesizer for more

information about instruments.

MNote Sequencer

123

SetTrkinfo $0ET1A

An application should call SetTrkInfo for each track it uses before starting to play a
sequence. The call assigns instruments in the current instrument table to logical
tracks, and determines the priorities of the instruments so that the Note Sequencer
can correctly allocate generators to them.

The application may disable the internal voices of the IIGS for a specified track by
issuing this call with the highest bit of the Instindex parameter set.

You must use SetinstTable to assign instruments to their respective tracks before
issuing this call.

Parameters

Stack before call

| - previous contenss _ |

|- priority ~| Word—Desired priority

|- instindex —| Word—Index number of instrument
| trackNum _| Word—Track number to assign specified instrument
| - -] <-sp

Stack atier call

| - previous comtents _ |

|- _| <-sp

Errors

$1A01 InstBoundsError; instrument number out of range

C

extern pascal void SetTrkInfo() inline(0x0ElA,dispatcher);

Note Sequencer 124

Startints $131A

Enables interrupts. Use this call to restore normal functioning after a
call to Stoplnts.

Parameters
This call has no input or output parameters, The stack is unaffected.

Cc

extern pascal void StartiInts() inline(0x131A,dispatcher);

Note Sequencer 125

StartSeq $OF1A
Starts interpretation of a series of seqltems stored at the address specified by

sequence.

Parameters

Stack before call

| - previous contemts _ |

= =

| . errHndirRoutine _| Long—Pointer to error handler

i = |

|. compRoutine _| Long—Pointerto completion routine
|- |

|. sequence —| Long—Handle to buffer containing sequence
L ~| <-sp

Stack after call

| - previous contents _ |

| - ~| <-sp

Errors
$2007 miNoBufErr; no MIDI output buffer is allocated
$1A05 NoStartErr; the Note Sequencer has not been started up

c

extern pascal void StartSeq() inline (0x0F1A,dispatcher);

MNote Segquencer 126

StepSeq $101A

Advances the Note Sequencer to the next seqgltem in the current
sequence, executing the current seqitems. A StepSeq call is the
equivalent of one tick of the Note Sequencer counter.

Parameters

This call has no input or output parameters. The stack is unaffected.

Errors

$1921 NoneAvailable; no seqltem available

$1924 AlreadyOn; note specified for NoteOn already on
$1A01 NoCommandErr ; invalid segltem

$1A02 NoRoomErr; insufficient memory to continue

$1A04 NoNoteErr; note specified for NoteOff not available

C

extern pascal void StepSeq() inline(0x101A,dispatcher);

Note Sequencer

127

Stoplints $141A

Disables Note Synthesizer and Note Sequencer interrupts. If the Note
Sequencer is started up, and interrupts are enabled, the Note
Synthesizer calls the Note Sequencer interrupt handler whenever an
interrupt occurs. When no notes are being played, the overhead involved
in this processing is unnecessary, so Stoplnts provides a way to cause
the Note Synthesizer not to service the interrupts. To restart interrupt
processing, use the Startints call.

The StartSeq call starts interrupt processing automatically, and the
SeqShutDown automatically halts it. No other Note Sequencer call
affects interrupt processing except Stoplnts and StartInts.

Parameters
This call has no input or output parameters. The stack is unaffected.

C
extern pascal void StopInta() inline(0Ox141A,dispatcher);

Note Saquencer 128

StopSeq $111A

Halts interpretation of a series of seqltems. The next parameter
specifies whether there are more seqltems to be executed. If so, that is,
if next is nonzero, the next phrase begins. Otherwise, the sequencer

simply stops.

Parameters

Stack before call

| - previous contents _|

s next —| Word—Boclean; TRUE if there are more seqltems
| - —| <-sp

Stack after call

| . previous comtents _ |

L. _| <-sp

c

aextern paacal void StopSeq() inline(0x111A,dispatcher);

Note Segquancer 12¢

h per 14

Note Synthesizer

v

This chapter documents the Note Synthesizer. This is new
documentation, not previously presented in the Apple [IGS Toolbox
Reference.

About the Note Synthesizer

The Note Synthesizer is a tool set that controls operation of the
Ensoniq Digital Oscillator Chip. With it, an application can turn the
Apple IIGS into a digital synthesizer suitable for playing music and
generating sound effects. The Note Synthesizer differs from the free-
form synthesizer of the Sound Tool Set in that it is specifically designed
to help you produce musical sounds. It includes utilities to help vou to
design waveforms, which determine the sound quality of synthesizer
output, and instruments, which are data structures that specify certain
things about the output sounds, so that you can store particular sound
qualities for reuse.

Use of the Note Synthesizer version 1.3 requires the Sound Tools
version 2.4 or later.

Instruments

The Note Synthesizer's basic functional unit is an instrument. This is a
data structure stored somewhere in the memory of the Apple IIGS that
defines the sound quality of a played note. When a program makes the
NoteOn call it passes a parameter containing a pointer to an instrument,
and that instrument is used to generate the note,

Table 14-1: Instrument data structure
Offset Field Name Size

0 Envelope 24 bytes

24 ReleaseSegment 1 byte

25 PriorityIncrement 1 byte

26 PitchBendRange 1 byte

27 VibratoDepth 1 byte

28 VibratoSpeed 1 byte

29 Spare 1 byte

30 AWaveCount 1 byte

31 BWaveCount 1 byic

32 AWavelist AWaveCount*6 bytes
X BWaveCount BWaveCount*t bytes
“X= (32+AWaveCount+5)

Note Syntheslzer 133

Envelope

The envelope describes the shape of the sound that the Note
Synthesizer generates. A note’s envelope is what gives it its dynamic
quality. A short, sharp sound has a steep, short envelope, and a long,
smooth sound has a flatter, longer envelope.

A synthesizer's envelope is traditionally described in terms of attack,
decay, sustain, and release, or ADSR.

Figure 14-1: ADSR

A R

The Attack portion of an envelope is the period when the sound is
increasing from silence to its peak loudness. This part of the envelope
determines the suddenness of a sound. A drumbeat or a plucked string
has an extremely steep artack, whereas a bowed string or a softly blown
wind instrument has a much fatter artack.

The Decay part of the envelope is the period when the sound falls off
from its peak loudness to the level it stays at, which is its sustain
portion. Attack and decay together can be used to control a sound’s
percussiveness. Sounds with a steep attack and decay tend to sound
plucked or percussive. A steep attack followed by a flat decay, or by
little or no decay, blare like a loud trumpet. A very flat artack and decay
produce a sound with a soft, smooth quality.

Sustain determines the note's overall perceived loudness and duration. A
drumbeat has virtually no sustain or release; it consists almost entirely
of attack and decay. A long, slow note on a violin, on the other hand,
might have a very flat attack and decay, and a long, high sustain.

The Release is the portion of a note as it dies away. Long releases can
produce a nice ringing quality, but can also be a problem if a note is
still sounding when another note starts, and is dissonant with the first
note .

Note Synthesizer 134

Note Synthesizer envelopes

The envelope definition in the Note Synthesizer's instrument record is
somewhat more complex than this simple four-part scheme. The
instrument’s envelope field can specify up to eight segments instead of
just four, so more complex sequences of attack, decay, sustain, and
release are possible. For example, the physical properties of pianos
cause them to have a complex envelope with two attack segments. A
simple ADSR is therefore limited in its ability to simulate a piano's
envelope. The Note Synthesizer can do better, because its eight
envelope segments allow a closer approximation of the piano's actual
envelope.

Figure 14-2: Simulating a plano’s envelope

Each segment of an instrument's envelope definition is composed of up
to eight linear segments. During each segment, the note's loudness
varies from its starting value toward its defined breakpoint value. The
segments are defined as a series of breakpoints followed by increments.
A breakpoint is a byte value between 0 and 127 representing a
logarithmic loudness scale. A value difference of 16 represents a change
of 6 decibels in loudness. The increments represent the amount the
volume changes with each of the envelope's updaxe interrupts. The value
is a two-byte fixed point number.

Table 14-2: Envelope field

Segment

1 breakpoint increment
2 breakpoint increment
3 breakpoint increment
- br':nkpnint increment
5 breakpoint increment
6 breakpoint increment
7 breakpoint increment
8 breakpoint increment

The shape of the envelope is arbitrary; it can be any shape that can be
specified in eight segments, so complex envelopes are possible. The last
breakpoint, though, should always be zero, so that the note dies away at
the end.

Mote Synthesizer 135

The length of time that a segment of the envelope lasts is given by the
following formula:

T= (L-N)'256
I*R
where:
T= segment’s duration
L= last breakpoint
N = next breakpoint
[= increment value
R= update rate

As an example, for a segment that changes from 30 to 40 with an
increment value of 25 and an update rate of 100 cycles per second, the
formula becomes

T= (30-40)*256 = 2560 = 1.02 seconds
25*100 2500

Thus, with the given parameters, the specified segment will require 1.02
seconds.

releaseSegment

The releaseSegment parameter defines the segment at which release
begins. Its value can be any number from 0 to 7, and simply identifies
which segment in sequence is the beginning of the release phase of the
envelope. The release phase may thus occupy several segments, but the
last breakpoint should always be zero.

prioritylncrement

The priorityincrement parameter is a value that is subtracted from the
generator's priority value when the envelope reaches its sustain phase.
This allows the Note Synthesizer to reallocate generators, giving higher
priority to notes which are just starting. When the envelope reaches the
release segment, the priority value assigned to its generator is again
reduced, this time to half its current value. Thus, the highest priorities
are assumed to go to notes that are just starting; notes being sustained
are accorded lower priority, and notes in their release phase receive
lowest priority. This is just a rule of thumb; the actual priority values
depend on the priority that was specified when the generator was
allocated.

MNote Synthesizer 136

pitchbendRange

The puichbendRange parameter specifies the maximum pitch bend that is
possible on the note, The maximium possible value for a pitch bend is
127; pitchbendRange specifies how much the pitch is raised by the pitch
bend value of 127. The legal values are 1, 2 and 4. ;

vibratoDepth

The vibratoDepth parameter can be any number from 0 to 127. A depth of
zero specifies that there is no vibrato effect on the note. Vibrato is
produced by modulating the pitch of the two oscillators that make up a
generator, using a triangle wave produced by a Low Frequency
Oscillator (LFOQ). When the vibratoDepth parameter specifies that there
is to be no vibrato effect, the vibrato mechanism is switched off to save
processing time.

vibratoSpeed

The vibratoSpeed parameter controls the rate of vibrato. Higher values
produce faster vibrato. The actual speed of vibrato effect depends on the

update rate.

AWaveCount and BWaveCount

The Note Synthesizer can use sampled or artificially created waveforms
to produce its notes. The parameters A WaveCount and BWaveCount
specify the number of waves in the wavelists that follow the
wavecounts.

Wavelists

A wavelist is an array of variable length. The elements of the array are
t-byte structures called waveforms. A wavelist can contain up to 255
waveforms.

A waveform data structure specifies wave data that is intelligible to the
Digital Oscillator Chip (DOC), and is stored somewhere in the memory
of the DOC.

Table 14-3: A waveform

topKey 1 byte
waveAddress 1 byte
waveSize 1 byte
DOCMode 1 byte
relPitch word

Note Synthesizer 137

When the Note Synthesizer plays a note, it examines the topkey field of
each waveform in the wavelLists until it finds a value that is greater
than or equal to the value of the note it is attempting to play. The first
waveform it finds with an acceptable topkey value is the one it plays.
For this reason, waveforms should be stored in increasing order of
topkey value. The last waveform in a wavelist should have a value of
127, the maximum valid pitch value.

Using appropriate topkey values, the Note Synthesizer can be adjusted
to custom tunings, such as just temperment, or non-Western scales. The
topkey values specify the boundaries between neighboring notes.

The waveAddress parameter is the high byte of the waveform’s address.

The waveSize parameter sets the size of the DOC's wave table, and the
frequency resolution of the DOC.

The DOCMode parameter sets the mode of the Digital Oscillator Chip.

The waveAddress, waveSize, and DOCMode parameters are all DOC
register values, and the Note Synthesizer loads them into the
appropriate DOC registers when it accesses the waveform data
structure.

The relPitch parameter is a word value that is used to tune the
waveform. The high-byte value is the semitone, and the low byte is
fractions of semitones. A value of 1 in the low byte corresponds to
1/256 of a semitone. A wavelist can specify a full range of notes for an
instrument with entries for each note that differ only in the relPitch
field. Such a wavelist would specify an instrument whose timbre is the
same for every note; only the pitch is different.

For more information on DOC registers and waveforms, see the DOC
specification, available from Ensoniqg.

Using the Note Synthesizer

An application that uses the Note Synthesizer must first start it up, then
allocate Digital Oscillator Chip generators for its use with AllocGen. It
can piay musical notes with individual calls to NoteOn and NoteOff for
each note that it plays. NoteOn starts a2 generator, which automatically
updates its envelope as it plays to produce the envelope specified by its
assigned instrument. When the application calls NoteOff, the Note
Synthesizer enters the release phase of the envelope for that voice, and
the note begins to die away.

An application that uses the Note Synthesizer to play notes should
disable the interrupts produced by any generators that are allocated for
note production. The Note Synthesizer responds to intérrupts from its
oscillators as if they were timer interrupts.

Note Synthesizer 138

Each generator is a pair of DOC oscillators, There are 32 such
oscillators; two of them are reserved for Apple’s use. The remaining 30
are paired into 15 generators, which produce the synthesized notes used
by the Note Synthesizer. The Note Synthesizer uses one of these
generators as a timer, leaving 14 generators for general use, If the MIDI
Tool Set is started up and is using the MIDI clock function, another
generator is allocated to serve as the MIDI clock, leaving 13 general-
purpose generators for application use.

The Note Synthesizer requires that the Sound Tools be loaded and
started up, and one page of bank zero memory must be allocated to it for
use as direct-page. The Note Synthesizer shares this direct-page space
with the Sound Tool Set. The direct-page area Is divided into 15 blocks
of 16 bytes, called Generator Control Blocks (GCB). The first byte of a
GCB is the allocation signature, indicating which synthesizer is using
which generator. The definition of the other 15 bytes of a GCB is
2ﬂetu‘mmedm¢ by the requirements of the synthesizer to which it is

oca

The GCB contains the values of any “knobs” or “controllers® defining
the parameters of the voice that it is currently playing. These
parameters are as follows:

SynthID byte Note Synthesizer ID = 2

GenNum byte Generator number ($00 -SOE)
Semitone byte Note being played as specified in call
Volume byte Output volume as specified in call
Pitchbend byte 0-127; 64 specifies no pitch bend
VibratoDepth byte As specified in instrument definition

Note synthesizer internal variables: 10 bytes

The Note Synthesizer allocates generators to all the different sound
tools that may need them, It therefore requires a piority scheme for
allocating generators in the event that there is more than one request
for the same generator,

A generator’'s priority may range from 0 through 128. A priority of 0
means the generator is not being used, and will be allocated to any use
that requests it. A priority of 128 indicates that the generator is locked
and cannot be reallocated. The remaining values in a generator's range
are used by the Note Synthesizer to control allocation of generators.

When a generator is allocated, it receives a priority. The Note
Synthesizer automatically lowers the priority of a generator that has
reached the sustain portion of its envelope, and again when it reaches
the release portion. When the note stops, the generator's priority
becomes zero. An application specifies a priority when requesting
allocation of a generator, so that allocation occurs when a generator is
available with a priority lower than that requested.

Note Synthesizer 139

DOC memory

An application that uses the Note Synthesizer must load any waveforms
that it can use into DOC memory with the Sound Tools call
WriteRAMBlock. If a zero is placed in the first 256 bytes of DOC
memory, it causes the timer oscillator to halt. If the application uses the
clock function of the MIDI Tools, then it must not write to the first 256
bytes of DOC memory.

Note Synthesizer calls

All the call descriptions for the Note Synthesizer are new. The tool
calls were undocumented in the Apple IIGS Toolbox Reference.

Note Synthesizer

140

NSBootinit $0119

Initializes the Note Synthesizer. An application must not make this call.

Parameters
This call has no input or output parameters. The stack is unaffected.

Cc

extern pascal wvoid MNSBootInit() inline({0x0119, dispatcher):

Note Synthesizer 141

NSStartUp $0219

Starts up the Note Synthesizer for use by an application. An application
must make this call before it makes any other Note Synthesizer calls
except NSStatus. The update rate is the rate at which interrupts are
generated to update envelopes and low-frequency osdllations. The value
is in units of 0.4 Hz. Reasonable values for this parameter might be
from 150 to 500. The default value is 500. Low rates require less
overhead, but higher rates generate smoother sounding envelopes and
better timing resolution.

The user update routine is a pointer to a routine that is called during
every limer interrupt. Sequencer programs are an example of software
that might use routines that run during Note Synthesizer interrupts.

Parameters

. previous comtents __ |

I

|. updateRate _| Word—Rate of envelope generation
B =

| . wusertpdatertn _| Long—Pointer to interrupt routine
|- | <-sp

Stack after call

| - previous comtents __ |
= .| <-sp

Errors

$1901 Alreadylnit; the Note Synthesizer was already started up
$§1902 SoundNotInit; the Sound Tools were not started up

$1925 SoundWrongVer; incompatible version of the Sound Tools

>
extern pascal veoid NSStartUp() inline(0x0219%, dispatcher):

MNote Synthesizer 142

NSShutDown $0319

Shuts down the Note Synthesizer and turns off all generators. An
application should make this call before quitting.

Parameters
This call has no input or output parameters. The stack is unaffected.

Errors
$1923 Notlnit; the Note Synthesizer was not started up

Cc

extern pascal void NSShutDown() inline(0x0319, dispatcher);

Neote Synthesizer 143

NSVersion $0419

Returns the version number of the Note Synthesizer . The version
number is in the standard format specified by Toolbox version number

protocol.

Parameters

Stack before call

| - previous contents _ |

| - space —~| Word—Space for result

k- —| <-sp

Stack after cail

| . previous contenss _ |

|. versionNum _| Word—Vession number of the Note Synth
kL ~| <-sp

C

extern pascal Word NSVersion() inline(0x0419, dispatcher);

Mote Synthesizer

144

NSReset $0519
Resets the Note Synthesizer. Applications must not make this call.

Parameters
This call has no input or output parameters. The stack is unaffected.

C

extern pascal void NSReset() inline(0x0519, dispatcher):

MNote Syntheslzer 145

NSStatus 30619

Returns a Boolean value indicating whether the Note Synthesizer is
active. If the Note Synthesizer is active, NSStatus returns TRUE.
Otherwise, the call returns FALSE.

Parameters

Stack before call

| . previous contents _ |

| - space _| Word—Space for result

= —| <-sp

Stack after call

| - previous contenss _ |

|- stamStatus | Word—Boolean; TRUE if the Synthesizer is started
e ~| <-sp

Cc

extern pascal Boolean NSStatus{) inline{0x0&619, dispatcher):

MNote Synthesizer

144

AllNotesOff $0D19

Turns off all Note Synthesizer generators and sets their priorities to
zero. It does not affect generators not used by the Note Synthesizer,
such as those allocated to the Free-Form Synthesizer.

Parameters
This call has no input or output parameters. The stack is unaffected.

c

extern pascal void AllNotesOff() inline (0x0D1%, dispatcher);

Note Synthesizer

147

AllocGen

$0919

Requests the allocation of a sound generator. Returns a generator
number from 0 to 13, The call will reallocate a generator if all

generators are allocated and the specified requestPriority exceeds that
of one of the previously allocated generators.

Parameters

Stack before call

| - previous contents _ |
|- space -1
[- requestPriority _|

Stack after call

| - previous contemts _ |
|. genvum _|

|- -1

Word—Space for result
Word—Desired generator priority

<=5P

Word—Number of generator allocated
<-SP

$1921 NoneAvail; no generators available to allocate
$1923 NotStarted; Note Synthesizer hasn't been started up

Cc

extarn pascal Word AllocGen() inline{(0x0919, dispatcher):

Note Synthesizer

148

DeAllocGen $0A19

Sets the named generator's allocation priority to zero. Any subsequent
allocation request with a valid requestPriority will then succeed.
Parameters

Stack before call

| . previous contents _ |

|- genNum —| Word—Generator number to deallocate
| | =<-sp

Stack affer call

| . previous comtents _ |

| - _| <-sp

Errors
$1922 BadGenNum; invalid generator number

Cc

extern pascal void DeallocGen() inline(0x0Al5, dispatcher);

Note Synthesizer

149

NoteOff

$0C19

Switches the specified generator to release mode, which causes the note
being generated to die out When the note's volume is zero, the

generator’s priority is set to zero, and it is considered to be off. The

genNum and semitone should be the same values specified in the
corresponding NoteOn cail.

Parameters

Stack before call

| - previous contenss _ |
|- genNum =
|- semitone]
- -1
Stack after call

| - previous contenss _ |
- |

c

extern pascal void NoteOff() inline(0x0C1%, dispatcher):

Word—Generator number
Word—Note being played
<=5P

<=5P

Note Synthesizer

150

NoteOn

$0B19

Initiates the generation of a note on a specified generator., Normally the
geniNum parameter should be a value returned by the AllocGen call. The

semitone parameter is a, standard MIDI value from 0 to 127, where

middle C is designated by the value 60. The volume parameter is a value
from 0 to 127 that can be treated as synonymous with MIDI velocity. The
value is copied into the Generator Control Byte, and is used to scale the

note's amplitude. A change of 16 steps in this parameter specifies a
change of 6 decibels in amplitude. The instrumentPtr parameter is a

pointer to an instrument. See the section on the instrument data
structure for more information.

1 Note If the sum of the volume parameter and the envelope amplitude is
less than 128, then the note will be inaudible because of the 48 dedbel

dynamic range of the DOC.

Parameters

Stack before call

| . previous contents _ |
|- gemvum _|
|- semitone —|
= volume]
|- -
|- instrumentPtr _|
|

Stack ofter call

| . previous comtenss __ |
|- ~|

Errors

Word—Desired generator number
Word—Desired pitch
Word—Desired volume

LONG—Desired voice
<=5P

<-5P

$1924 AlreadyOn; the specified note is already being played

C

axtern pascal void MNoteOn() inline (0x0Bl29, dispatcher):

Mote Synthesizer

151

Example

The following example shows assembly language code that allocates a
generator, passes the correct parameters to NoteOn, plays a note, and

turns off the note:

pushword #0
pushword #64
_AllocGen

pla

sta GenNum

pushword GenNum

pushword Semitone
pushword #127
pushlong #Instrument

_NoteOn

After some time...
pushword GenNum

pushword Semitone
_NoteOff

;space for GenNum
;priority of this note
;retrieve an allocated
;generator

;get the generator
;number

;store it

;push
jparameters:generator
jnote

jmaximum volume

;LONG pointer to
!inatnment definition

fpush parameters:
igenerator

inote

;jturn off the note

Note Synthesizer

152

=
Print Manager

This chapter documents new features of the Print Manager. The complete
reference to the Print Manager is in Volume 1, Chapter 15 of the Apple
IIGs Toolbox Reference.

New information
The following functions have been added to the Print Manager:

The call PrChooser has been completely redesigned. It now has a
new user interface, and supports printing over AppleTalk zones.

Printer.Setup now saves separate settings for direct and network
connections to printers, and saves the User Name for use on a
network. Old version of the Printer.Setup file are incompatible with
these changes, so the Print Manager will delete such files and create
a new one in the correct format. Old settings are discarded, and the
default settings are used to create the new setup file.

If the System disk is locked, the Print Manager will not be able to
save changes in Chooser settings, and will display a dialog to warn
the user of this fact. It will, however, save any changes to the
Chooser settings in RAM, so the new settings will remain in effect
until the current application quits.

If the Print Manager attempts to load a driver and finds that it is
missing, it will pass control to a routine that determines what call
was being made to the driver, pops the parameters off the stack, and
returns a “missing driver "error. It will also display an alert asking
the user to make sure a printer and port driver are selected.

In version of the Systemn software after 3.1.1, the PMStartup call
does notload any drivers into memory. Drivers are loaded only when
they are needed. The Print Manager does not require that the
Drivers folder be present, and if it is present, does not require that
there be any drivers in it

PMStartup checks to see whether the List Manager has been loaded.
Since PrChooser uses List Manager calls, PMStartup will load the
List Manager if it has not already been loaded.

New calls

Two new Print Manager calls are PMLoadDriver and PMUnloadDriver.
With these calls, an application can load or unload a specific printer
driver or port driver as needed.

Print Monoger 155

PMUnloadDriver $3413
Unloads the current pornt driver, printer driver, or both, depending on the input
parameter. Legal values for the driver parameter include

0 unload both drivers

1 unload printer driver
2 unload port driver.

Parameters

Stack before call

| . previous comtents _ |

|. whichDriver _| Word—Printer driver to unload
|. | <-sp

Stack ofter cail

| . previous comtents _ |
I —| <-sp

Errors
51308 BadParam

C

extern pascal void PMUnloadDriver() inline{0x3413,dispatcher);

156 Apple ll s Toolbox Reference Update

PMLoadDriver $3513

Loads the current printer driver, port driver, or both, depending on the input
parameter. The current driver is determined by the settings saved in the
Printer.Setup file. Legal values for the driver parameter include

0 load both drivers
1 load printer driver
2 load port driver.

Parameters
$1308 BadParam

Stack before call

| . previous contents _ |
|. whichkDriver _| Word—Printer driver to load
l- —| <-sp

Stack after call
| - previous contents _ |
| - ~| <-sp

C

extern pascal void PMLoadDriver() inline(0x3513,dispatcher);

Print Manager 157

Chapter 16
—_—

QuickDraw |l

This chapter documents new features of QuickDraw II. The complete
reference to QuickDraw II is in Volume 2, Chapter 16 of the Apple IIGS
Toolbox Reference,

Error corrections

The following items provide corrections to problems with the
documentation for QuickDraw II in the Apple IIGS Toolbox Reference.

-

The documentation in the Toolbox Reference that explains Pen
Modes is somewhat misleading. There are, in fact, 8 drawing modes,
and you may set the pen to draw lines and other elements of
graphics in any of the eight. There are also 16 modes used for
drawing text, and they are completely independent of the graphic
pen modes. The 8 drawing modes listed in the table on page 16-235
are valid modes for either the text pen or the graphic pen. You can
set either pen to any of these modes using the appropriate calls. You
can also set the text pen to eight other modes. These are listed in
the table on page 16-260 of the Toolbox Reference. The SetPenMode
call sets the mode used by the graphics pen; the SetTextMode call
sets the mode used by the text pen. Setting either one does not
affect the other.

There are two versions of the Apple IIGS standard 640-mode color
tables, one on page 16-36 and one on page 16-159. The two tables are
different; the one on page 16-159 is the correct one.

In the QuickDraw II chapterthe Apple IIGS Toolbox Reference states
that the coordinates passed to the LineTo and MoveTo calls should be
expressed as global coordinates, In fact, the coordinates must be

local coordinates, and must refer to the grafPort in which the
drawing or moving takes place.

QuickDraw II 141

s

Chapter 17
— —

QuickDraw Il Auxiliary

®

J—?‘l

This chapter documents a2 new call in QuickDraw II Auxiliary. The
complete reference to QuickDraw II Auxiliary is in Volume 2, Chapter
17 of the Apple IIGS Toolbox Reference.

QuickDraw || Auxillary 165

SpecialRect $0C12

Frames and fills a rectangle in a single call, making separate calls to
FrameRect and FillRect unnecessary, The single call to SpecialRect is
considerably faster than separate calls to FrameRect and FillRect.

Parameters

Stack before call
| - previous contents _ |

= recPtr -] Long—Pointer to rectangle to draw
|. frameColor _| Word—Color of rectangle frame

|. filicolor —| Word—Color of rectangle interior
|. ~| <-sp

Stack after call

| - previous contents _ |

e _| <-sp

c

extern pascal void SpacialRect() inline(0x0Cl2,dispatcher);

166 Apple Il s Toolbox Reference Updats

Chapter 1

Sound Tool Set

it

T

i

N L

Yi

This chapter documents new features of the Sound Tool Set, The
complete reference to the Sound Tools is in Volume 2, Chapter 21 of the
Apple IIGS Toolbox Reference. ;

New information
This section provides new information about the Sound Tool Set.

* The four sound and music tools, that is, The Note Sequencer, Note
Synthesizer, MIDI Tool Set, and Sound Tool Set, work together ,
and must be compatible versions.

= The Sound Tools now return the same version number and behave
identically whether running with old or new versions of the Apple

[IGS ROM.

» The routine called by SoundBootlnit that initializes the MidilnitPoll
vector (SE101B2) has been changed to an RTL.

FFStartSound
There is new information about the FFStartSound call.

Parameter block

bufferSize

The starting location of the waveform

The smallest waveform that can be played by FFStartSound
is one page (256 bytes). A wave_size value of $FFFF plays
65536 pages.

The following formula gives the value of the frequency
register:

FR=((32°PF)/1645)
where FR= frequency register value; PF equals playback
frequency in cycdles per second.

See the Ensoniq DOC ERS for further information on
docBuffer and volSerting values,

This field assigns a size for the DOC buffer used for the
waveform being played, The Sound Tools assign one such
buffer for each of the two oscillators used to play a
waveform. The second oscillator's buffer is at the address
specified by docBuffer+bujferSize.

nextWavePtr This is a 3-byte field which contains the address of the

next waveform to be played. If the field's value is zero,
then the current waveform is the last waveform to be
played.

See the Ensonig DOC ERS for further information on
docBuffer and volSetting values.

Sound Tool Set 169

New Error Code
$0817 IRQNotAssignedErr; No Master IRQ was assigned

Example code

PEA Gen.mode ; Generato:z/mode word
Pushlong Pblock ; Parameter block pointer
_FFStartSound ; Start free-form
;: synthesizer
Pblock equ * ¢ Waveform parameter block
DC I4 waveStart ; Waveform start address
DS I2 waveSize { Wave size in pages
DC I2 fregOffset ; DOC frequency reglster
; value
DC I2 docBuffer ; DOC RAM buffer start
; address
DC I2 bufferSize 7 DOC buffer size code
(500 to SFF)
DC I4 nextWavePtr : Pointer to next waveform
{ paramater block
DC I2 volSetting ; DOC wolume register
; value
nextWave equ * ; Next waveform parametar ; block
Error corrections

This section provides corrections to problems with the documentation of
the Sound Tool Set in the Apple [IGS Toolbox Reference.

* The documentation of the FFSoundDoneStatus call includes an error.
You will note that the paragraph that describes the call does not
agree with the “Stack after call" diagram. The text states that the
call returns TRUE if the specified sound is still playing, while the
dizgram states that it returns FALSE if still playing. The diagram, not
the text, is correct.

170 Apple lics Toolbox Reference Update

* There is also an undocumented distinction between a generator that
is playing a sound and one that is "active." A generator that is
playing a sound returns FALSE in response to an FFSoundDoneStatus
call. One that is "active® may or may not be playing a sound; the
value of its bit is 1 in the flags returned by FFSoundStatus.

Sound Tecl Set 171

Chapter 19
e

Tool Locator

This chapter documents new features of the Tool Locator, The complete

reference to the Tool Locator is in Volume 2, Chapter 24 of the Apple
lIGS Toolbox Reference.

New information

This section explains new features of the Tool Locator.
+ The Tool Locator uses a new algorithm to load tools from disk, It

will only load tools from disk if it cannot findd a tool in ROM with

a version number as high as the requested version. The Tool Locator

makes no assumptions about which tools are in ROM and which are

on the System disk.

For every tool that is to be loaded, the Tool Locator makes a version

call. If the version call returns an error because the ool is not

present, or the resulting version number is too low, then the tool is

loaded from the System disk.

« The Tool Locator no longer unloads all RAM-based tools every time

TLShutDown is called. Instead, it returns the system to a default

state, set by a new call in the Tool Locator, SetDefaultTPT. This call

can make any collection of RAM and ROM tools the default state. The

system returns to the default state when TLShutdown is cailed.

Tool Locator

175

SetDefauliTPT $1601

Sets the default Tool Pointer Table (TPT) to the current TPT. Used to
permanently install a tool patch. An application should not make this call.

Parameters
This call has no input or output parameters. The stack is unaffected.

C

extern pascal vold SetDefaultTPT() inline(0x1601,dispatcher):

176 Apple lies Toolbox Reference Update

Chapter 20
i

Window Manager

o —

he

This chapter documents new features of the Window Manager. The
complete reference to the Window Manager is in Volume 2, Chapter 25
of the Apple IIGS Toolbox Reference.

New information

This section explains new features of the Window Manager, and
clarifies points that were not made explicit before,

= TaskMaster now brings a window to the front after dragging is
complete. TaskMaster previously brought windows to the front
before dragging.

= Using the SetWindowOrigin call, a programmer can control the
horizontal scrolling characteristics of windows that TaskMaster
scrolls. A common use of SetWindowOrigin is to ensure that the
window origin is aligned on an even pixel, so that colors do not
change if the display mode is changed between 320 and 640. When
using the call, be sure that the horizontal scroll value is a whole
multiple of the mask value. Otherwise, strange behavior can occur.
As an extreme example, consider an origin value of 32 and a scroll
amount of 1. Using the right scroll arrow will not scroll the window
at all, and using the left one will scroll it by a value of 32. The new
control value for the scrolling is calculated by adding or subtracting
the scroll value and the current value and applying the mask. In this
case adding 1 and masking results in the original value. Subtracting 1
and masking results in a new value that is 32 less than the old value.

= Standard windows now draw their titles in sixteen colors regardiess
of mode.

e The grid parameter of the call DragWindow has been renamed
dragFlag. Bits 0 through 7 specify the grid value, Bits 8 through 14
are reserved bits; they must be zero, Bit 15 is a selection flag; if its
value is 1, then the window will be brought to the top after
dragging.

= It is no longer possible to specify grid values of 256 or 512.

Alert windows

The new AlentWindow call (see the section “New Window Manager
calls” later in this chapter) can be used to create Alerts for presenting
the user with important messages. The call does all the work of creating
and displaying the window and contents for the Alert, and retumns the
ID of the button that the user chooses.

AlenWindow accepts a pointer to a string that contains its message, and
a pointer to an array of substitution strings. The substitution strings can
be any of seven standard strings (such as "OK", "Continue”, and so on) or
can be specified by the application and stored in the buffer to which the
substitution-string pointer refers.

Window Manager 179

Size character

Character 1 is the size of the alert window. The character can be 0-9.
The meaning of the values is as follows:

Character Approximate maximum mumber of characters.

0 Custom size and position; followed by
hi WORD x-coordinate of upper left corner
vl WORD y-coordinate of upper left corner
h2 WORD x-coordinate of lower right corner
v2 WORD y-coordinate of lower right corner

30

60

110

175

110

150

200

250

9 300

Since AlertWindow provides a limited number of standard sizes, it is
possible to create alerts that display properly whether the Apple IIGS is
in 320 or 640 mode. It is necessary, however, to design the text and
buttons carefully in order to make this work.

The following table shows the dimensions of the standard alert
windows, This table gives only an approximate idea of the size of each
window, Application code should not rely on the exact widths, heights,
or position of standard windows.

W ~d O WM s W R

Character Height 320 Width 320 Height 640 Width 640
1 46 152 46 200
2 62 176 54 228
3 62 252 62 300
4 90 252 72 352
5 54 252 46 400
6 62 300 54 452
7 80 300 62 500
8 108 300 72 552
9 134 300 80 600

180 Apple llzs Toolbox Reference Update

lcon number

The next character is the icon number. The icon number can be 0=9. The
meanings of the icon number values are

0. No icon
1 custom icon, followed by
LONG Pointer to image data
WORD Width of image data in bytes
WORD Height of image data in scan lines
2 Stop icon
3 Note icon
4 Caution icon
5. Disk icon
6. Disk swap icon

7-9 are reserved - DO NOT USE THEM

Separator character

The next character is a separator character. The separator can be any
character, but cannot appear in the message text or button strings. The
separator divides the message from the first button string and button
strings from each other. For purposes of standardization, the slash (/)
character is recommended.

Message text

The message text follows the first separator character . Any characters
allowed by LETextBox2 are allowed in the message text. See the later
section “Special characters” for additional functions of message text.
The total size of message text, after substitution of strings, is limited to
1000 characters.

Bufton strings

The first character after the separator at the end of the message string

is the beginning of the first button’s title. The title can then be
followed with cither another separator character and another button
title, or a string termination character (zero) to end the alert string. A
total of three button titles can be included at the end of the alent string.
These buttons will be evenly spaced and centered at the bottom of the
alert window. The width of each button is the same and is set by the
widest button title. The maximum length of button text after substitution
of strings is 80 characters.

Window Manager 121

Termination of Alert string
A zero byte marks the end of the alert string.

Special characters

The following special characters can be embedded in the message text
and button strings of an alert. [n order for a special character to appear
in the text of a button or message, you must enter it twice in the string.
For example, if you want “A" to appear in an Alert message, you must
enter it in the message string as “An",

A A caret (A) designates the default button. The default button is
the the button selected if the user presses the return key on the
keyboard. This button will also appear outlined in bold on the screen.
Only one button can be the default button. After the caret, the button
title must follow as in any other button. Other special characters may
also appear after the caret. A single caret in the body of message text
has no affect and is deleted from the message.

Substitute standard string. The pound (#) character must be
followed by a decimal number. Numbers 0-6 can be used . 7-9 are
reserved and should not be used. The standard substitution strings are:

#0, OK

#1. Cancel
#2. Yes
#3. No
4. Try Again
#5. Quit
#6. Continue
g Substitute given string. The asterisk (*) character followed by an

ASCII decimal number from 0 through 9 denotes a substitution string to
be inserted at that point. The asterisk and the following number will
be replaced by the corresponding string in the specified substitution
array. A pointer to the substitution array is passed to AlertWindow, The
substitution array is defined as an array of LONG pointers.

Substitution string array
LONGI[0] Pointer to string that will substitute for *0
LONG[1] Pointer to string that will substitute for *1
LONGI2] Pointer to string that will substitute for "2
LONG(3] Pointer to string that will substitute for *3
LONGI4] Pointer to string that will substitute for *4
LONGI(S] Pointer to string that will substitute for *5
LONG([6] Pointer to string that will substitute for *6
LONGI[7] Pointer to string that will substitute for *7

182 Apple lles Toolbox Referance Update

LONG[8] Pointer 1o string that will substitute for *8
LONGIS] Pointer to string that will substitute for *9

Substitution strings can be C strings, Pascal strings, or terminated by a
carriage return. C strings and carriage-return terminated strings are
selected by passing 0 to AlertWindow as the string flag. A value of 1 in
the string flag specifies a Pascal string.

Window records

The Window Record data structure has been redefined. The new

definition is illustrated here:

LONG - Pointer to next window record, zero is end of list.
BYTE[170] - Window's grafPort.

LONG - Address of window's definition procadure.

LONG - Reserved for application’s use.

LONG - Address of routme that will draw window's content.
LONG - Reserved by Window Manager, do not use.

LIONG - Handle of window's structure region.

LONG - Handle of window's content region.

LONG - Handle of window's update region,

LONG - Handle of first control in window’s content.

LONG - Handle of first control in window's frame.

WORD - Flags that define window.,

BYTE[n] - Additional data space defined by window's defProc.

The wReserved field is a new data field reserved by Apple for future

expansion,

The wFrame field is lllustrated as follows. The shaded bits in the
diagram are for use by window defProcs. The values named in the
diagram are those used by the standard document window defProc.
Unshaded bits are reserved by the Window Manager and are the same

for all windows.

Window Manager 183

——F_HILTED

F_ALLOCATED
F_CTL_TIE

Error cormrections

This section corrects some errors in the Window Manager documentation
in the Apple OGS Toolbox Reference.

. The manual's description of SetZoomRect is incorrect, The correct
description is as follows:

Sets the fZoomed bit of the window’s wFrame record to zero. The RECT
passed to SetZoomRect then becomes the window's zoom RECT. The
window's size and position when SetZoomRect is called becomes the
window's unzoomed size and position, regardless of what the unzoomed
characteristics were before SetZoomRect was called.

. Apple [IGS Toolbox Reference page 25-126, third line:
If wmTaskMask bit tminfo (bit 15) = 1

should read:
If wmTaskMask bit tminfo (bit 15) = 0

- When used with a window which does not have scroll bars, the
call WindNewRes calls the window’s defproc to recompute window
regions. A call to SizeWindow is not necessary under these
circumstances,

New Window Manager calls

The following tool calls have been added to the Window Manager Tool
Set since publication of the Apple TGS Toolbox Reference.

184 Apple liss Toolbox Reference Update

AlertWindow $590E

Creates an alert window that displays a message pointed to by
alertStrPtr. The message can be either a C or Pascal string, as specified
by stringType. A value of 0 signifies that the message is a C string, and
a value of 1, that it is a Pascal string. The subStrPtr parameter points to
an array of substitution strings for use with substitution characters. For
more detailed information, see the previous section “Alert Windows” in
this chapter.

Parameters

Stack before call

| . previous contents _ |

|- space —| Word—Space for result

|. siringType _| Word—0ifC string; 1 if Pascal string
|- =

| - subStrPtr —| Lomg—Pointer to substitution array
1= =

|. atertstrPtr _| Long—Pointer to alernt string

|- | <-se

Stack after cail

| . previous comtents __ |

|- reswult —| Word—Bunon number selected

| - -] <-sp

Window Manager 185

DrawinfoBar

$550E

Redraws the info bar of the window specified by grafPortPtr. The
method used to redraw the info bar 's interior is the routine specified
by the winfoDefProc field of the paramList passed to NewWindow when
the window is created. The Window Manager will automatically clip info
bar drawing to the dimensions of the info bar , and to the visible region

of the window.
Parameters

Stack before call
| - previous contents _ |
-1

|- grapomtper |

Long-——Pointer to grafPort of window
<-SP

<=SP

184 Apple liss Toolbox Reference Update

EndFrameDrawing $5BOE

Restores Window Manager variables after a call to StartFrameDrawing.

Parameters
This call has no input or output parameters, The stack is unaffected.

Window Manager 187

GetWindowMgrGlobals $580E

Returns a pointer to the Window Manager global data area. An
application should never make this call.

Parameters

Stack before call

| - previous contents _ |

= —|

1= space —| Long—Space for result
Ls | <-sp

Stack after caill

| - previous contents _ |

E)

|. globalDataPtr _| Long—Pointer to the global data area
| - _| <-sp

188 Apple liss Toolbox Reference Update

ResizeWindow

$5COE

Moves, resizes, and draws the window specified by grafPortPtr. The
recPtr parameter is a pointer to the window’'s content region. The
hiddenFlag parameter is 2 Boolean parameter; a TRUE value specifies
that those portions of the window that are covered should not be drawn.
If the value is FALSE the entire window is drawn, covered or not.

Parameters

Stack before call

| - previous comtemss _ |
- biddenFlag -
. =1

|
|
|- recPtr o)
b -1
|. grafPomtPtr _|
I

Stack after call
],pﬂmﬂuﬂ:mnuﬂu ,l
I- -

Word—Boolean; whether to hide covered areas

Long—Pointer to window's content region

Long—Pointer to window’s grafPort
<-SP

<-SP

Window Manager a9

StartFrameDrawing $5A0E

Sets up to draw a window frame. Should only be called by window
definition procedures. Must be balanced by a call to EndFrameDrawing
when drawing is completed.

Parameters

Stock before cdail

| - previous comtents __ |

|. windowPtr _| Long—Pointerto window to draw
- ~-| <-sp

Slack after call

| - previous contents __ |

I ~| <-sp

190 Apple lies Toolbox Reference Update

Index of new tool calls

This index lists new Tool calls alphabetically. These
are calls that were not documented in the first
edition of the Apple IIGS Toolbox Reference. The
page number on which a description appears in this
Update appears to the right of the call name.

A
ACEBoatlnit
ACECompBegin
ACECompress
ACEExpand
ACEExpBegin
ACElnfo
ACEReset
ACEShutDown
ACEStartlUp
ACEStatus
ACEVersion
AletWindow
AllNotesOff
AllocGen

c

Clearlner

D
DeAllocGen
DrawlnfoBar

E
EndFrameDrawing

G

Getloc
GetTimer

GerWindowMgrGlobals

|
InstzIWithStats

M
MIDiBootlnit
MIDIClock
MIDIControl
MIDIDevice
MIDlinfo
MIDIReadPacket
MIDIReset
MIDIShuDown
MIDIStanUp
MIDIStamus
MIDIVersion
MIDWrikePacket

N

NoteOff
NoteOn
N5Bootlnit
M5Reset
N5shutDown
NSSanUp
MNSStatus
MN&Version

11

17
18
20
21
22
15
13
12
16
14
185
147
148

118

149
186

187

119
120
188

43

£
73
76
81
83
85
71
69
68
72
70
86

150
151
141
145
143
142
146
144

PMLoadDriver

RealFreeMem

SeqReset

156
157

51
189

121
111
116
114
112
117
115
3%

176
122
123
124
166
190
125
126
127
128
129

Index of new calls

195

Index of all tool calls

This index lists all the Tool calls alphabetically.
Callslisted are from both the Apple IIGS Toolbox
Reference and from this update. Page numbers in the
Reference are on the left, and are hypenated; page
numbers from this update are on the right, and are
not hyphenated.

Call narme

AddFontVar
AddPt

Alert

Alen Window
AliNotesOIf

AllocGen
AsyncADBReceive

BeginUpdate
BlockMove
BringToFront
Buton

c

3-10
3-12
3-11
3-10
3-12
3-11
8-23
8-24
16-68
6-3

314

25-35
12-21
23-36
7-31

13-33
6-35

16-69
16-70
12-22
13-34
23-37
5-12

8-26

14-30

14-31
16-7T1
3-15%
16-72
5-12
6-36
5-13
5-14
17-9
16-72
16-73
16-74
25-38
14-53
12-22
17-10
16-7%

11
17
18
20
21
22
15
13
12
16
14

185
147
148

118

Call ssame Reference
CountFamilies 8-28
CountFonts 8-29
CountMIitems 13-35
CreatelList 11-16
CString Bounds 16-76
CSiringWidth 16-77
CtiBoctinit 4-41
CiiNewles 4-45
A3
aiShmDown 4-43
Qisanlp §-42
dadd
CiTextDev 23-15
CdVersion 4-43
DeallocGen
-8
Decilong 9.9
DefaultFilter 6-37
14-59
DeleteMenu 13-36
DeleteMitern 13-37
DelHeanBeat 14-52
DeskBootlnit 5.9
DeskReset 5-11
DeskShutDown 5-10
DeskStanlUp 5-9
DeskStams 5-11
25-39
DeskVersion %-10
DialogBootlnit 6-27
DialogReset 6-30
DialogSelect 6-38
DialogShuwtDown 6-29
6-28
DialogStarus 5-30
DialogVersion 6-29
16-78
DisableDItem .40
DisableMitem 13-38
DisposeAll 12-23
DisposeControl 4-45
DisposeHandle 12.24
DisposeMenu 13-39
DisposeRgn 16-79
DigCopy 641
DigCut 6-42
DigDelete 5-43
DigPasie 544
DoWindows 7-32
DragControl 4-40
DragRect 4-48
Dreg Window 25-44
DrarweChar 16-80
DrawControls 4-54
Draw String 16-81
DrawDialog 6-45
Drawicon 17-11
DrawinfoBar
Drawiember 11-17
DtawMenuBar 13-40
DrawOneldd 4-55
DrawPicture 17-12

Indax of all calls

159

149

186

Err'W|
EventAvail

FakeMouse
FamNum2ltemiD
FFGeneratorStatus

FFSoundDoneStatus

FFSoundStatus
FFStanSound
FFStopSound
FillAre

FillOval

FillPoly
FillRect

FillRgn
FillRRect

Fixa
FixATan2
FixDiv
FixFontMenu
FixMenuBar
FixMul
FixRatio

200 Apple lies Toolbox Reference Update

16-82
16-83

7-a7
16-84
7-30
7-29
7-27
7-30
7-29
Badty
13-40

29-47
2547
16-8%
16-86
16-87
16-88
4-56

16-89
16-90
16-91
16-92
16-93
6-47

3-17
23-18
23-19
23-20
231
7-33

734
8-31
21-11
21-13
21-14
21-1%
21-18
16-94
16-9%
16-96
16-97
16-98
16-99
4-57
6-48
8-32
B-34
12-2%
25-48
9-10
9-11
9-12
5-1%
9-13
9-14
8-36
13-41
9-1%
9-16

187

FramePoly
FrameRect
FrameRgn
FrameRRect

GetCilValue
GetCursorAdr
GetDASurPr
GetDataSize
GetDbiTime
GetDefButton
GetDefProc
GetDltemBox
GetDitemType

9-17
13-41
7-35
8-18
8-18
8-3%
8-22

8-21
8-19
8-22
8-21
16-100
9-18
9-19
9-20
9-21
9-22

9-24
16-101
16-102
16-103
16-104
16-105
16-106
12-26
25-50
14-17

14-38
3.1%
14-19
16-107
6-49
16-109
16-110
16-111
13-42
7-36
16-112
16-113
16-114
16-115%
16-116
25-51
25.52
25-53
6-50
1-59
4-60
4-61
482
463
464
16-117
5-16
25-54
7.37
6-51
25.55
6-52
6-53

Update

GetDitemValue

GetFaminfo
GetFamNum

GetFirstDItem

6-54
3-22
23-23
B-41
B-42
16-118
6-55
25-56
16-119
16-120
16-121
16-122
16-123
16-124
16-12%
5-57
24-7
16-126
12-17
25-58
25-59
23-24
23-25
14-23

11-18

16-127
25-60
13-44
13-45
13-46
13-47
13-48
13-49
13-50
13-51
13-52
7-38
14-31
13-53
13-54
6-57
14-57
6-59
6-61
7-39
25-61
517
T41
3-26
13.27
25-62
16-128
16-129
16-130
16-131
16-132
16-135
16-134
16-13%
16-136
16-137
16138

119

HideDltem

Reference

16-139
25-63
16-140
16-141
16-143
20-10
20-11
20-12
20-13
20-14
20-13%
25-64
21-21
16-144
16-14%
25-65
13-55
16-146
16-147
25-66
21-22
16-148
16-149
16-150
14-22

24-8
25-67
16-151
14-63
16-152
16-153
14-9
15-68
29-69

2%-70
25-T1
2%-72
25-73%
25-T4
16-154
16-1%%
16-159%
4-65
25-7%

12-28
12-29
2.25
9-26
9.27
456
16-1%6

16-156
25-78
4-67
13-56
25-79
9-28
12-30
12-31

index of gl colls

201

Updame

120

188

lnitColorTable
InitCursor

InkTextDev

IntZHex
IntSource
InvalRect
InvalRgn
InvertAre
InvenOval
IavertPoly
InvertRect
InvertRgn
InvertRRect

IsDialogEvent
[temID2FamNum

K
KillContrals
KillPicture

LEGetScraplen
LEGetTextHand
LEGetTexilen
LEldle

LEInsert

LEKey

LENew

LEPaste
LEReset

02 Apple liss Toolbox Reference Update

14-32
12-32
12-33

2-3

9-3
9-7

16-157
16-158
16-160
14-32
13-56
16-161
23-28

13-58
16-162
16-163
5-18

5-19

9-29
9-30
14-29
25-80
25-81
16-164
16-165
16-166
16-167
16-168
16-169
5-63
B-4%

4-68
17-13
16-170

10-16
10-12
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-23
10-24
10-23
10-26
10-27
10-28
10-30
10-32
10-1%

43

10-33
10-34
10-35
10-36
10-37
10-38
10-39
10-14
10-13
10-1%
10-40
10-42
10-45%
10-46
10-14
16-171
16-172
11-13
11-15
11-14
11-13
11-1%
11-14
8-46
24-10
20-15
B-48
24-11
16-173
2-31
9-32
9-33
9-34
9-35
9-36

16-174
16-175%
16-176
16-177
12-34
13-29
1359
13-61
13-63
13-64
13-32
13-66
13-31
13-30
13-32
12-31
24-14

Updane

67
73

81
83
s
71
69
68

.

OpenRgn
OSEventAvail

P
PackBytes
PaintArc
PaintOval

12-16
12-19
12-18
12-17
12-20
12-19
6-65
6-67
16-178

16-179
16-180
25-82
14-6
14-8
14-7
14-6
14-8
14-7
9-37
14-45

4-70

12-35
11-19
13-67
13-68
6-70
6-72
16-181
25-83
11-20
6-74
16-183

16-182
16-183
16-184
16-185
5-20
17-14
16-186
16-187
16-187
7-42

14-39
16-188
16-189

70
86

150
151
141
145
143
142
146
144

PaintPixels
PaintPoly

ParamText

Pt2Rect
PtinRect
PuinRgn
PuToHand
Purgeall
PurgeHandle
PutScrap

=]
QDAuxBoot nit
QDAuxReser
QDAanSmaDown

QDAuURSats
QDAux Version
QDBootinit
QDReset
QDsmaDown
QCSanlp
QDSatos
QDVersion

R

Random
ReadAbs
ReadAsciiTime
ReadBParam
ReadBRam
ReadChar

16190
16-192
16-193
16-194
16-195
6-75
16-196
17-1%
25-89
15-25

15-28
15-27
15-26
15-28

15-27
14-33
743
16-197
15-29
15-30
15-31
15-32
15-33
15-34
15-35
15-36
15-38
15-40
15-42
15-43
15-44
15-45
15-46
16-199
16-200
16-201
12-38
12-39
12-40
20-16

17-6
17-8
17-7
176
17-8
17-7
16-63
16-67
16-66
16-65
16-67
16-66

16-202
3.16
14-16
14-13
14-10
23-29

Index of all calls

Ulpadiage:

203

157

156

SeqStanUp

204 Apple ligs Toolbox Reference Update

3-17
3-18

14-34
21-24
14-14

12-41
16-203
16-204
a5-9

6-76
11-21

5-21
16-20%
12-42
24-16
5-21

18-11
18-15
18-15
18-1%
18-14
18-13
18-12
18-14
18-13
§-22
16-206
5-22
24-17
16-207
19-7
19-4
19-8
19-6
19-5
19-4
19-6
19-5
20-7
20-9

20-7
0-9

16-208
9-38
16-209
16-210
6-77
11-22
25-92
25-93
3-19

51

189

121
111
116
114
112

14-3%
14-37
3-23
16-211
16-212

16-213
16-214
13-69
16-215
16-217
16-218
16-219
16-220
16-221
25-94
25.9%
25-96
4-74
4-79
4-76
4-77
4-78
4-79
16-222
6-79
5-23
25-97

6-80
25-58
6-81
6-82
6-83
16-223
23-32
23-33
T-45
16-224
16-225
16-227
16-228
25-99
16-229
12-43
14-48

25-101
25-102
23-34
2333

16-230
684
16-231
2%-103
13-71
13-72
13-73
13-74
13-75
13-76

Updase

117
113

39

176

122

123

Call name

SetMitemFlag
SetMitemID

SetMItemName
SetMItemSiyle

Reference

1377
13-79
13-80
13-81
13-82
14-36
13-84
13-8%
16-252
25-104
23-37
23-38
25-10%
16-223
16-234
16-236
16-237
16-238
16-239
16-240
16-241
16-242
16-243
16-244
16-245
12-44
12-49%
H-49
16-246
16-247
16-248
16-249
16-2%0
20-17
25-106
16-291
16-292
21-2%
21-26
16-253
16-254
7-46
13-86
16-2%5
16-256
2%-107
16-2%7
16-299
16-261

24-19
16-262
21-27
14-61
16-263
16-264
24-20
25-108
25-109
2%-110
25-111
2%-112
22-20
22-1%

124

25-118
4-81
23-10
16-269
23-40
23-13
23-11
43-11
23-14
23-12
16-270
23-41
T-48

Index of all calls

Upadame

166

190
129
126
127

128
129

205

TLBootlnit 24-4
TLMountVolume 24+21
TLReset 24-6
TiShutDown 24-5
TLSaanUp 24-4
TlStatus 24-6
TlTextMountVolume 24-23
TLVersion 24-5
TotalMem 12-46
TrackCoatrol 4-82
TrackGoAway 25-127
TrackZoom 25-129
u

LDivicle 9-39
UnionRect 16-271
UnionRgn 16-272
UnloadOneTool 24-25
UnloadScrap 20-17
UnPackBytes 14-42
UpdateDinlog 6-87
v

ValidRect 25-131
ValidRgn 25-132
w

WanCursor 17-16
WakMouselp 749
WindBootlni 25-32
WindDragilect 25-133
WindNewRes 25-135
WinclowGlobal 25-136
WindReset 25-34
WindSineDown 25-33
WindSanllp 25-32
WindStarus 25-34
Wi Vermaon 15-33
WreeBParam 14-11
‘WraeBRam 14-9
WraeChar 23-42
WriteCString 23-43
WriteLine 23-44
WriteRamBlock 21-28
WriteString 23-45
WriteTimeHex 14-15

b 4

X21Fix 9-40
X2Frac 241
XorRgn 16-273
2

ZeroScrap 20-18
ZoomWindow 25-138

206 Apple llgs Toolbox Reference Update

Call camne

Updme

THE APPLE PUBLISHING SYSTEM

edited, and composed on a
Apple Macintosh® computers
and Microsoft® Word. Proof
pages were created onthe Apple
LaserWriter® Plus. Final pages
were created on the Varityper®
VT600™, POSTSCRIPT®, the
LaserWriter page-description
language, was developed by
Adobe Systems Incorporated.

Text type is ITC Garamond®

(a downloadable font distributed
by Adobe Systems). Display
type is ITC Avant Garde
Gothic®. Bullets are ITC Zapf
Dingbats®. Some clements,
such as program listings, are set
in Apple Courier, a fixed-width
fonL

